Skip to content

Commit

Permalink
Updated readme
Browse files Browse the repository at this point in the history
  • Loading branch information
CeSchmitz committed Jan 29, 2024
1 parent b920a2f commit e997160
Showing 1 changed file with 12 additions and 3 deletions.
15 changes: 12 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,19 @@ Leveraging uncertainty quantification to optimise CRISPR guide RNA selection
- [Python 3.8+](https://www.python.org/)
- [Jupyter](https://jupyter.org/)

Optional (Only required if you intend to run the data preprocessing again. We have already provided the final dataset, `merged_X.pt`, `merged_Features.pt` and `merged_Y.pt`)
- [Bowtie2](https://bowtie-bio.sourceforge.net/bowtie2/index.shtml)
- [SAMtools](https://www.htslib.org/)

## Getting started

- `CRISPR_DeepEnsemble.ipynb`: A notebook containing instruction on how to use the deep ensemble. Utilises the sample data from provided in the `data` directory.

- `CRISPR_DeepEnsemble.py`: A python file containing the implementation of the deep ensemble. See `CRISPR_DeepEnsemble.ipynb` for an example implementation.

## Data
Data was obtained from Kim et al. (2019), Wang et al. (2019), Kim et al. (2020) and Xiang et al. (2021). All datasets have a corresponding folder in the `data` directory. Each folder contains a notebook that has details on how the data was obtained and processed.

## References

Bradford, J., Chappel, T., & Perrin, D. (2022). Rapid Whole-Genome Identification of High Quality CRISPR Guide RNAs with the Crackling Method. The CRISPR Journal, 5(3), 410-421.
Expand All @@ -26,8 +33,10 @@ Bradford, J., & Perrin, D. (2019). Improving CRISPR guide design with consensus

Chari, R., Yeo, N. C., Chavez, A., & Church, G. M. (2017). sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS synthetic biology, 6(5), 902-904.

Lorenz, R., Bernhart, S. H., Zu Siederdissen, C. H., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for molecular biology, 6(1), 1-14.
Kim, H. K., Kim, Y., Lee, S., Min, S., Bae, J. Y., Choi, J. W., Park, J., Jung, D., Yoon, S., & Kim, H. H. (2019). SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance. Science Advances, 5(11), eaax9249.

Kim, N., Kim, H. K., Lee, S., Seo, J. H., Choi, J. W., Park, J., Min, S., Yoon, S., Cho, S.-R., & Kim, H. H. (2020). Prediction of the sequence-specific cleavage activity of Cas9 variants. Nature Biotechnology, 38(11), 1328-1336.

Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M., & Valen, E. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic acids research, 42(W1), W401-W407.
Wang, D., Zhang, C., Wang, B., Li, B., Wang, Q., Liu, D., Wang, H., Zhou, Y., Shi, L., Lan, F., & Wang, Y. (2019). Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nature Communications, 10(1), 4284.

Sunagawa, G. A., Sumiyama, K., Ukai-Tadenuma, M., Perrin, D., Fujishima, H., Ukai, H., ... & Shimizu, Y. (2016). Mammalian reverse genetics without crossing reveals Nr3a as a short-sleeper gene. Cell reports, 14(3), 662-677.
Xiang, X., Corsi, G. I., Anthon, C., Qu, K., Pan, X., Liang, X., Han, P., Dong, Z., Liu, L., Zhong, J., Ma, T., Wang, J., Zhang, X., Jiang, H., Xu, F., Liu, X., Xu, X., Wang, J., Yang, H., Bolund, L., Church, G. M., Lin, L., Gorodkin, J., & Luo, Y. (2021). Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nature Communications, 12(1), 3238.

0 comments on commit e997160

Please sign in to comment.