Skip to content

Commit

Permalink
Add support for importable histogram print function
Browse files Browse the repository at this point in the history
Running histogram.py on a data file is cool, but most of my
data is kept in local variables in scripts.

Introduce print_histogram function which accepts a list of
samples and prints the same histogram it would as if the list
was exported to a file.

Issue: #37
Signed-off-by: Gal Pressman <[email protected]>
  • Loading branch information
galpressman committed Sep 20, 2017
1 parent f5e933f commit 1f797ff
Show file tree
Hide file tree
Showing 2 changed files with 30 additions and 20 deletions.
Empty file added data_hacks/__init__.py
Empty file.
50 changes: 30 additions & 20 deletions data_hacks/histogram.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,27 +121,29 @@ def test_median():
assert "4.50" == "%.2f" % median([4.0, 5, 2, 1, 9, 10])


def histogram(stream, options):
def _histogram(stream, minimum=None, maximum=None, num_buckets=None, logscale=False,
custbuckets=None, calc_mvsd=True,
bucket_format='%10.4f', calc_percentage=False, dot='∎'):
"""
Loop over the stream and add each entry to the dataset, printing out at the
end.
stream yields Decimal()
"""
if not options.min or not options.max:
if not minimum or not maximum:
# glob the iterator here so we can do min/max on it
data = list(stream)
else:
data = stream
bucket_scale = 1

if options.min:
min_v = Decimal(options.min)
if minimum:
min_v = Decimal(minimum)
else:
min_v = min(data, key=lambda x: x.value)
min_v = min_v.value
if options.max:
max_v = Decimal(options.max)
if maximum:
max_v = Decimal(maximum)
else:
max_v = max(data, key=lambda x: x.value)
max_v = max_v.value
Expand All @@ -151,11 +153,9 @@ def histogram(stream, options):
diff = max_v - min_v

boundaries = []
bucket_counts = []
buckets = 0

if options.custbuckets:
bound = options.custbuckets.split(',')
if custbuckets:
bound = custbuckets.split(',')
bound_sort = sorted(map(Decimal, bound))

# if the last value is smaller than the maximum, replace it
Expand All @@ -174,8 +174,8 @@ def histogram(stream, options):
# so no need to do a -1!
bucket_counts = [0 for x in range(len(boundaries))]
buckets = len(boundaries)
elif options.logscale:
buckets = options.buckets and int(options.buckets) or 10
elif logscale:
buckets = num_buckets and int(num_buckets) or 10
if buckets <= 0:
raise ValueError('# of buckets must be > 0')

Expand All @@ -202,7 +202,7 @@ def log_steps(k, n):
for step in log_steps(buckets, diff):
boundaries.append(min_v + step)
else:
buckets = options.buckets and int(options.buckets) or 10
buckets = num_buckets and int(num_buckets) or 10
if buckets <= 0:
raise ValueError('# of buckets must be > 0')
step = diff / buckets
Expand All @@ -216,7 +216,7 @@ def log_steps(k, n):
accepted_data = []
for record in data:
samples += record.count
if options.mvsd:
if calc_mvsd:
mvsd.add(record.value, record.count)
accepted_data.append(record)
# find the bucket this goes in
Expand All @@ -237,29 +237,39 @@ def log_steps(k, n):
if skipped:
print("# %d value%s outside of min/max" %
(skipped, skipped > 1 and 's' or ''))
if options.mvsd:
if calc_mvsd:
print("# Mean = %f; Variance = %f; SD = %f; Median %f" %
(mvsd.mean(), mvsd.var(), mvsd.sd(),
median(accepted_data, key=lambda x: x.value)))
print "# each " + options.dot + " represents a count of %d" % bucket_scale
bucket_min = min_v
print "# each " + dot + " represents a count of %d" % bucket_scale
bucket_max = min_v
percentage = ""
format_string = options.format + ' - ' + options.format + ' [%6d]: %s%s'
format_string = bucket_format + ' - ' + bucket_format + ' [%6d]: %s%s'
for bucket in range(buckets):
bucket_min = bucket_max
bucket_max = boundaries[bucket]
bucket_count = bucket_counts[bucket]
star_count = 0
if bucket_count:
star_count = bucket_count / bucket_scale
if options.percentage:
if calc_percentage:
percentage = " (%0.2f%%)" % (100 * Decimal(bucket_count) /
Decimal(samples))
print format_string % (bucket_min, bucket_max, bucket_count, options.dot *
print format_string % (bucket_min, bucket_max, bucket_count, dot *
star_count, percentage)


def histogram(stream, options):
_histogram(stream, options.min, options.max, options.buckets, options.logscale,
options.custbuckets, options.mvsd, options.format, options.percentage,
options.dot)


def print_histogram(samples, **kwargs):
stream = [str(x) for x in samples]
_histogram(load_stream(stream, False, False), **kwargs)


if __name__ == "__main__":
parser = OptionParser()
parser.usage = "cat data | %prog [options]"
Expand Down

0 comments on commit 1f797ff

Please sign in to comment.