This is the code for the paper DELE: Deductive $\mathcal{EL++}$ Embeddings for Knowledge Base Completion.
- run.py is an example of how to train and evaluate a model
- evaluation_utils.py: rank-based evaluator
- losses/elembeddings_losses.py: GCI loss functions for ELEmbeddings model
- losses/elbe_losses.py: GCI loss functions for ELBE model
- losses/box2el_losses.py: GCI loss functions for Box2EL model
- data_utils/datasets.py dataset classes
- data_utils/dataloader_go.py: ontology dataloader for GO & STRING data
- data_utils/dataloader_owl2vec_star.py: ontology dataloader for OWL2Vec* data
- data_utils/deductive_closure.py: deductive closure computation
- models/elembeddings_go.py: ELEmbeddings model for PPI and function prediction
- models/elembeddings_owl2vec_star.py: ELEmbeddings model for FoodOn data
- models/elbe_go.py: ELBE model for PPI and function prediction
- models/elbe_owl2vec_star.py: ELBE model for FoodOn data
- models/box2el_go.py: Box2EL model for PPI and function prediction
- models/box2el_owl2vec_star.py: Box2EL model for FoodOn data
- data/food_ontology: contains train/validation/test sets for FoodOn
- data/go_string/*_yeast.owl: train/validation/test sets for PPI prediction
- data/go_string/*_yeast_hf.owl: train/validation/test sets for protein function prediction
- Python 3.9
- Anaconda
git clone https://github.com/bio-ontology-research-group/DELE.git
cd DELE
conda env create -f environment.yml
conda activate dele_env