Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Eccentricity and mean anomaly support in bilby #861

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 79 additions & 7 deletions bilby/gw/source.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,22 @@
"""


def gwsignal_binary_black_hole(frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, **kwargs):
def _base_gwsignal_binary_black_hole(
frequency_array,
mass_1,
mass_2,
luminosity_distance,
a_1,
tilt_1,
phi_12,
a_2,
tilt_2,
phi_jl,
theta_jn,
phase,
eccentricity,
mean_per_ano,
**kwargs):
"""
A binary black hole waveform model using GWsignal

Expand Down Expand Up @@ -48,6 +62,10 @@ def gwsignal_binary_black_hole(frequency_array, mass_1, mass_2, luminosity_dista
Angle between the total binary angular momentum and the line of sight
phase: float
The phase at coalescence
eccentricity: float
Orbital eccentricity
mean_per_ano: float
Mean anomaly
kwargs: dict
Optional keyword arguments
Supported arguments:
Expand Down Expand Up @@ -83,8 +101,8 @@ def gwsignal_binary_black_hole(frequency_array, mass_1, mass_2, luminosity_dista
=====
This function is a temporary wrapper to the interface that will
likely be significantly changed or removed in a future release.
This version is only intended to be used with `SEOBNRv5HM` and `SEOBNRv5PHM` and
does not have full functionality for other waveform models.
This version is only intended to be used with ``SEOBNRv5HM``, ``SEOBNRv5EHM``
and ``SEOBNRv5PHM`` and does not have full functionality for other waveform models.
"""

from lalsimulation.gwsignal import GenerateFDWaveform
Expand All @@ -103,7 +121,7 @@ def gwsignal_binary_black_hole(frequency_array, mass_1, mass_2, luminosity_dista
waveform_kwargs.update(kwargs)

waveform_approximant = waveform_kwargs['waveform_approximant']
if waveform_approximant not in ["SEOBNRv5HM", "SEOBNRv5PHM"]:
if waveform_approximant not in ["SEOBNRv5HM", "SEOBNRv5EHM", "SEOBNRv5PHM"]:
if waveform_approximant == "IMRPhenomXPHM":
logger.warning("The new waveform interface is unreviewed for this model" +
"and it is only intended for testing.")
Expand Down Expand Up @@ -141,9 +159,7 @@ def gwsignal_binary_black_hole(frequency_array, mass_1, mass_2, luminosity_dista
phi_12=phi_12, a_1=a_1, a_2=a_2, mass_1=mass_1 * utils.solar_mass, mass_2=mass_2 * utils.solar_mass,
reference_frequency=reference_frequency, phase=phase)

eccentricity = 0.0
longitude_ascending_nodes = 0.0
mean_per_ano = 0.0

# Check if conditioning is needed
condition = 0
Expand Down Expand Up @@ -252,6 +268,62 @@ def gwsignal_binary_black_hole(frequency_array, mass_1, mass_2, luminosity_dista
return dict(plus=h_plus, cross=h_cross)


def gwsignal_binary_black_hole(frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, **kwargs):

return _base_gwsignal_binary_black_hole(
frequency_array=frequency_array,
mass_1=mass_1,
mass_2=mass_2,
luminosity_distance=luminosity_distance,
a_1=a_1,
tilt_1=tilt_1,
phi_12=phi_12,
a_2=a_2,
tilt_2=tilt_2,
phi_jl=phi_jl,
theta_jn=theta_jn,
phase=phase,
eccentricity=0,
mean_per_ano=0,
**kwargs)


def gwsignal_eccentric_binary_black_hole(
frequency_array,
mass_1,
mass_2,
luminosity_distance,
a_1,
tilt_1,
phi_12,
a_2,
tilt_2,
phi_jl,
theta_jn,
phase,
eccentricity,
mean_per_ano,
**kwargs):

return _base_gwsignal_binary_black_hole(
frequency_array=frequency_array,
mass_1=mass_1,
mass_2=mass_2,
luminosity_distance=luminosity_distance,
a_1=a_1,
tilt_1=tilt_1,
phi_12=phi_12,
a_2=a_2,
tilt_2=tilt_2,
phi_jl=phi_jl,
theta_jn=theta_jn,
phase=phase,
eccentricity=eccentricity,
mean_per_ano=mean_per_ano,
**kwargs)


def lal_binary_black_hole(
frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, **kwargs):
Expand Down
84 changes: 80 additions & 4 deletions test/gw/source_test.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,15 @@
import unittest
import logging
import pytest
import random
import unittest
from copy import copy
from unittest.mock import patch

import astropy.units as u
import bilby
import lal
import lalsimulation

import numpy as np
from copy import copy
import pytest


class TestLalBBH(unittest.TestCase):
Expand Down Expand Up @@ -170,6 +172,7 @@ def test_waveform_error_raising(self):
bilby.gw.source.gwsignal_binary_black_hole(
self.frequency_array, **raise_error_parameters
)

# def test_gwsignal_bbh_works_without_waveform_parameters(self):
# self.assertIsInstance(
# bilby.gw.source.gwsignal_binary_black_hole(
Expand All @@ -193,6 +196,79 @@ def test_gwsignal_lal_bbh_consistency(self):
np.allclose(hpc_gwsignal["cross"], hpc_lal["cross"], atol=0, rtol=1e-7)
)

def test_argument_passed_to_generate_waveform(self):
# here we test the behaviour of the function "gwsignal_binary_black_hole"
# until the execution of the "generate_fd_waveform" in gwsignal. In particular
# the actual generate_fd_waveform is not called and only the parameters passed to
# the function are checked.
# The test does not require gwsignal to support any of the approximants or parameters.
from lalsimulation.gwsignal.models.pyseobnr_model import SEOBNRv5PHM as wf_gen

class MyException(Exception):
pass

with patch.object(
lalsimulation.gwsignal.models,
"gwsignal_get_waveform_generator",
autospec=True,
) as mock_gwsignal_get_waveform_generator:

with patch.object(
wf_gen, "generate_fd_waveform", autospec=True
) as mock_wgen_gen_fd:
mock_wgen_gen_fd.side_effect = MyException(
"__not_the_string_input_domain_error__"
)
mock_gwsignal_get_waveform_generator.return_value = wf_gen()

for current_param, gwsignal_target_param in (
"eccentricity",
"eccentricity",
), ("mean_per_ano", "meanPerAno"):
mock_wgen_gen_fd.reset_mock()
mock_gwsignal_get_waveform_generator.reset_mock()

parameters = self.parameters.copy()
parameters["waveform_approximant"] = "SEOBNRv5PHM"
parameters.update(self.waveform_kwargs | {"eccentricity": 0, "mean_per_ano": 0})
parameters[current_param] = random.uniform(0, 0.3)

with self.assertRaises(MyException):
bilby.gw.source.gwsignal_eccentric_binary_black_hole(
self.frequency_array, **parameters
)

# check we are calling the mock generator
mock_gwsignal_get_waveform_generator.assert_called_once_with(
parameters["waveform_approximant"]
)

# checks generated_fd_waveform is called
mock_wgen_gen_fd.assert_called_once()

# checks parameters are passed: this is done inside the
self.assertIsInstance(
mock_wgen_gen_fd.call_args_list[0].args[0], wf_gen
)

# check if the currently modified parameter is dA22, dtau32 etc
self.assertIn(
gwsignal_target_param, mock_wgen_gen_fd.call_args_list[0].kwargs
)
converted_param = mock_wgen_gen_fd.call_args_list[0].kwargs[
gwsignal_target_param
]

if converted_param.unit == u.rad:
self.assertEqual(
converted_param.value, parameters[current_param]
)

elif converted_param.unit == u.dimensionless_unscaled:
self.assertEqual(
float(converted_param), parameters[current_param]
)


class TestLalBNS(unittest.TestCase):
def setUp(self):
Expand Down