Official Code for "Continuous-time Autoencoders for Regular and Irregular Time Series Imputation" Paper in WSDM'24
conda create -n cta python=3.9.7
conda activate cta
sh create_env.sh
cd generating_dataset
sh data_downloading.sh
cd ..
sh dataset_generating.sh
python main.py --config ./configs/Stocks_best/Stocks_07masked_VAE_AE.py --config.model.saving_path ./experiments/Stocks_07masked_VAE_AE_reproduce --mode train --log_path ./experiments/Stocks_07masked_VAE_AE_reproduce/train.log
python main.py --config ./configs/Stocks_best/Stocks_07masked_AE_AE.py --config.model.saving_path ./experiments/Stocks_07masked_AE_AE_reproduce --mode train --log_path ./experiments/Stocks_07masked_AE_AE_reproduce/train.log
For other datasets, change dataset name
and 'missing rate`
python main.py --config ./configs/Stocks_best/Stocks_07masked_VAE_AE.py --config.model.saving_path ./experiments/Stocks_07masked_VAE_AE_pretrained --mode test --log_path ./experiments/Stocks_07masked_VAE_AE_pretrained/test.log
python main.py --config ./configs/Stocks_best/Stocks_07masked_AE_AE.py --config.model.saving_path ./experiments/Stocks_07masked_AE_AE_pretrained --mode test --log_path ./experiments/Stocks_07masked_AE_AE_pretrained/test.log