-
-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e22f93e
commit 3c61060
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
import json | ||
import os | ||
import streamlit as st | ||
from cassandra.auth import PlainTextAuthProvider | ||
from cassandra.cluster import Cluster | ||
from llama_index import ServiceContext | ||
from llama_index import set_global_service_context | ||
from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext | ||
from llama_index.embeddings import GradientEmbedding | ||
from llama_index.llms import GradientBaseModelLLM | ||
from llama_index.vector_stores import CassandraVectorStore | ||
from copy import deepcopy | ||
from tempfile import NamedTemporaryFile | ||
|
||
@st.cache_resource | ||
def create_datastax_connection(): | ||
|
||
cloud_config= {'secure_connect_bundle': 'secure-connect-bhavesh-astra-test.zip'} | ||
|
||
with open("bhavesh_astra_test-token.json") as f: | ||
secrets = json.load(f) | ||
|
||
CLIENT_ID = secrets["clientId"] | ||
CLIENT_SECRET = secrets["secret"] | ||
|
||
auth_provider = PlainTextAuthProvider(CLIENT_ID, CLIENT_SECRET) | ||
cluster = Cluster(cloud=cloud_config, auth_provider=auth_provider) | ||
astra_session = cluster.connect() | ||
return astra_session | ||
|
||
def main(): | ||
|
||
index_placeholder = None | ||
st.set_page_config(page_title = "Chat with your PDF using Llama2 & Llama Index", page_icon="🦙") | ||
st.header('🦙 Chat with your PDF using Llama2 model & Llama Index') | ||
|
||
if "conversation" not in st.session_state: | ||
st.session_state.conversation = None | ||
|
||
if "activate_chat" not in st.session_state: | ||
st.session_state.activate_chat = False | ||
|
||
if "messages" not in st.session_state: | ||
st.session_state.messages = [] | ||
|
||
for message in st.session_state.messages: | ||
with st.chat_message(message["role"], avatar = message['avatar']): | ||
st.markdown(message["content"]) | ||
|
||
session = create_datastax_connection() | ||
|
||
os.environ['GRADIENT_ACCESS_TOKEN'] = "Enter your Token" | ||
os.environ['GRADIENT_WORKSPACE_ID'] = "Enter your Workspace ID" | ||
|
||
llm = GradientBaseModelLLM(base_model_slug="llama2-7b-chat", max_tokens=400) | ||
|
||
embed_model = GradientEmbedding( | ||
gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"], | ||
gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"], | ||
gradient_model_slug="bge-large") | ||
|
||
service_context = ServiceContext.from_defaults( | ||
llm = llm, | ||
embed_model = embed_model, | ||
chunk_size=256) | ||
|
||
set_global_service_context(service_context) | ||
|
||
with st.sidebar: | ||
st.subheader('Upload Your PDF File') | ||
docs = st.file_uploader('⬆️ Upload your PDF & Click to process', | ||
accept_multiple_files = False, | ||
type=['pdf']) | ||
if st.button('Process'): | ||
with NamedTemporaryFile(dir='.', suffix='.pdf') as f: | ||
f.write(docs.getbuffer()) | ||
with st.spinner('Processing'): | ||
documents = SimpleDirectoryReader(".").load_data() | ||
index = VectorStoreIndex.from_documents(documents, | ||
service_context=service_context) | ||
query_engine = index.as_query_engine() | ||
if "query_engine" not in st.session_state: | ||
st.session_state.query_engine = query_engine | ||
st.session_state.activate_chat = True | ||
|
||
if st.session_state.activate_chat == True: | ||
if prompt := st.chat_input("Ask your question from the PDF?"): | ||
with st.chat_message("user", avatar = '👨🏻'): | ||
st.markdown(prompt) | ||
st.session_state.messages.append({"role": "user", | ||
"avatar" :'👨🏻', | ||
"content": prompt}) | ||
|
||
query_index_placeholder = st.session_state.query_engine | ||
pdf_response = query_index_placeholder.query(prompt) | ||
cleaned_response = pdf_response.response | ||
with st.chat_message("assistant", avatar='🤖'): | ||
st.markdown(cleaned_response) | ||
st.session_state.messages.append({"role": "assistant", | ||
"avatar" :'🤖', | ||
"content": cleaned_response}) | ||
else: | ||
st.markdown( | ||
'Upload your PDFs to chat' | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |