Skip to content

Reproduce the table 2 of paper in description #4

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 3 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion benchmark_utils/image_dataset.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,22 @@
import os
import random

from torch.utils.data import Dataset
from typing import Callable
from PIL import Image


class ImageDataset(Dataset):
def __init__(self, folder: str, transform: Callable = None) -> None:
def __init__(self, folder: str, transform: Callable = None, num_images=None):
self.folder = folder
self.transform = transform
self.files = [f for f in os.listdir(folder) if f.endswith((
'.png', '.jpg', '.jpeg'))]

if num_images is not None:
self.files.sort()
self.files = random.sample(self.files, num_images)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this whithout replacement?


def __len__(self):
return len(self.files)

Expand Down
110 changes: 110 additions & 0 deletions datasets/bsd500_bsd20.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
from benchopt import BaseDataset, safe_import_context, config

with safe_import_context() as import_ctx:
import deepinv as dinv
import torch
from torchvision import transforms
from benchmark_utils.image_dataset import ImageDataset
from deepinv.physics import Downsampling, Denoising, GaussianNoise
from deepinv.physics.generator import MotionBlurGenerator


class Dataset(BaseDataset):

name = "BSD500_BSD20"

parameters = {
'task': ['denoising', 'gaussian-debluring', 'motion-debluring', 'SRx4'],
'img_size': [256],
}

requirements = ["datasets"]

def get_data(self):
# TODO: Remove
device = (
dinv.utils.get_freer_gpu()) if torch.cuda.is_available() else "cpu"

n_channels = 3

if self.task == "denoising":
noise_level_img = 0.03
physics = Denoising(GaussianNoise(sigma=noise_level_img))
elif self.task == "gaussian-debluring":
filter_torch = dinv.physics.blur.gaussian_blur(sigma=(3, 3))
noise_level_img = 0.03
n_channels = 3

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filter_torch,
noise_model=dinv.physics.GaussianNoise(sigma=noise_level_img),
device=device
)
elif self.task == "motion-debluring":
psf_size = 31
n_channels = 3
motion_generator = MotionBlurGenerator((psf_size, psf_size), device=device)

filters = motion_generator.step(batch_size=1)

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filters["filter"],
device=device
)
elif self.task == "SRx4":
physics = Downsampling(img_size=(n_channels, self.img_size, self.img_size),
filter="bicubic",
factor=4,
device=device)
else:
raise Exception("Unknown task")

transform = transforms.Compose([
transforms.Resize((self.img_size, self.img_size)),
transforms.ToTensor()
])

train_dataset = ImageDataset(
config.get_data_path("BSD500") / "train",
transform=transform
)

test_dataset = ImageDataset(
config.get_data_path("BSD500") / "val",
transform=transform,
num_images=20
)

dinv_dataset_path = dinv.datasets.generate_dataset(
train_dataset=train_dataset,
test_dataset=test_dataset,
physics=physics,
save_dir=config.get_data_path(
key="generated_datasets"
) / "bsd500_bsd20",
dataset_filename=self.task,
device=device
)

train_dataset = dinv.datasets.HDF5Dataset(
path=dinv_dataset_path, train=True
)
test_dataset = dinv.datasets.HDF5Dataset(
path=dinv_dataset_path, train=False
)

x, y = train_dataset[0]
dinv.utils.plot([x.unsqueeze(0), y.unsqueeze(0)])

x, y = test_dataset[0]
dinv.utils.plot([x.unsqueeze(0), y.unsqueeze(0)])

return dict(
train_dataset=train_dataset,
test_dataset=test_dataset,
physics=physics,
dataset_name="BSD68",
task_name=self.task
)
27 changes: 23 additions & 4 deletions datasets/bsd500_cbsd68.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,16 @@
from benchmark_utils.hugging_face_torch_dataset import (
HuggingFaceTorchDataset
)
from deepinv.physics import Denoising, GaussianNoise
from deepinv.physics import Denoising, GaussianNoise, Downsampling
from deepinv.physics.generator import MotionBlurGenerator


class Dataset(BaseDataset):

name = "BSD500_CBSD68"

parameters = {
'task': ['denoising', 'debluring'],
'task': ['denoising', 'gaussian-debluring', 'motion-debluring', 'SRx4'],
'img_size': [256],
}

Expand All @@ -31,17 +32,35 @@ def get_data(self):
if self.task == "denoising":
noise_level_img = 0.03
physics = Denoising(GaussianNoise(sigma=noise_level_img))
elif self.task == "debluring":
elif self.task == "gaussian-debluring":
filter_torch = dinv.physics.blur.gaussian_blur(sigma=(3, 3))
noise_level_img = 0.03
n_channels = 3 # 3 for color images, 1 for gray-scale images
n_channels = 3

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filter_torch,
noise_model=dinv.physics.GaussianNoise(sigma=noise_level_img),
device=device
)
elif self.task == "motion-debluring":
psf_size = 31
n_channels = 3
motion_generator = MotionBlurGenerator((psf_size, psf_size), device=device)

filters = motion_generator.step(batch_size=1)

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filters["filter"],
device=device
)
elif self.task == "SRx4":
n_channels = 3
physics = Downsampling(img_size=(n_channels, self.img_size, self.img_size),
filter="bicubic",
factor=4,
device=device)
else:
raise Exception("Unknown task")

Expand Down
110 changes: 110 additions & 0 deletions datasets/bsd500_imnet100.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
from benchopt import BaseDataset, safe_import_context, config

with safe_import_context() as import_ctx:
import deepinv as dinv
import torch
from torchvision import transforms
from benchmark_utils.image_dataset import ImageDataset
from benchmark_utils.hugging_face_torch_dataset import HuggingFaceTorchDataset
from deepinv.physics import Downsampling, Denoising, GaussianNoise
from deepinv.physics.generator import MotionBlurGenerator
from datasets import load_dataset


class Dataset(BaseDataset):

name = "BSD500_imnet100"

parameters = {
'task': ['denoising', 'gaussian-debluring', 'motion-debluring', 'SRx4'],
'img_size': [256],
}

requirements = ["datasets"]

def get_data(self):
# TODO: Remove
device = (
dinv.utils.get_freer_gpu()) if torch.cuda.is_available() else "cpu"

if self.task == "denoising":
noise_level_img = 0.03
physics = Denoising(GaussianNoise(sigma=noise_level_img))
elif self.task == "gaussian-debluring":
filter_torch = dinv.physics.blur.gaussian_blur(sigma=(3, 3))
noise_level_img = 0.03
n_channels = 3

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filter_torch,
noise_model=dinv.physics.GaussianNoise(sigma=noise_level_img),
device=device
)
elif self.task == "motion-debluring":
psf_size = 31
n_channels = 3
motion_generator = MotionBlurGenerator((psf_size, psf_size), device=device)

filters = motion_generator.step(batch_size=1)

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filters["filter"],
device=device
)
elif self.task == "SRx4":
n_channels = 3
physics = Downsampling(img_size=(n_channels, self.img_size, self.img_size),
filter="bicubic",
factor=4,
device=device)
else:
raise Exception("Unknown task")

transform = transforms.Compose([
transforms.Resize((self.img_size, self.img_size)),
transforms.ToTensor()
])

train_dataset = ImageDataset(
config.get_data_path("BSD500") / "train",
transform=transform
)

dataset_miniImnet100 = load_dataset("mterris/miniImnet100")
test_dataset = HuggingFaceTorchDataset(
dataset_miniImnet100["validation"], key="image", transform=transform
)

dinv_dataset_path = dinv.datasets.generate_dataset(
train_dataset=train_dataset,
test_dataset=test_dataset,
physics=physics,
save_dir=config.get_data_path(
key="generated_datasets"
) / "bsd500_imnet100",
dataset_filename=self.task,
device=device
)

train_dataset = dinv.datasets.HDF5Dataset(
path=dinv_dataset_path, train=True
)
test_dataset = dinv.datasets.HDF5Dataset(
path=dinv_dataset_path, train=False
)

x, y = train_dataset[0]
dinv.utils.plot([x.unsqueeze(0), y.unsqueeze(0)])

x, y = test_dataset[0]
dinv.utils.plot([x.unsqueeze(0), y.unsqueeze(0)])

return dict(
train_dataset=train_dataset,
test_dataset=test_dataset,
physics=physics,
dataset_name="BSD68",
task_name=self.task
)
27 changes: 23 additions & 4 deletions datasets/cbsd68_set3c.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,15 +8,16 @@
from benchmark_utils.hugging_face_torch_dataset import (
HuggingFaceTorchDataset
)
from deepinv.physics import Denoising, GaussianNoise
from deepinv.physics import Denoising, GaussianNoise, Downsampling
from deepinv.physics.generator import MotionBlurGenerator


class Dataset(BaseDataset):

name = "CBSD68_Set3c"

parameters = {
'task': ['denoising', 'debluring'],
'task': ['denoising', 'gaussian-debluring', 'motion-debluring', 'SRx4'],
'img_size': [256],
}

Expand All @@ -31,17 +32,35 @@ def get_data(self):
if self.task == "denoising":
noise_level_img = 0.03
physics = Denoising(GaussianNoise(sigma=noise_level_img))
elif self.task == "debluring":
elif self.task == "gaussian-debluring":
filter_torch = dinv.physics.blur.gaussian_blur(sigma=(3, 3))
noise_level_img = 0.03
n_channels = 3 # 3 for color images, 1 for gray-scale images
n_channels = 3

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filter_torch,
noise_model=dinv.physics.GaussianNoise(sigma=noise_level_img),
device=device
)
elif self.task == "motion-debluring":
psf_size = 31
n_channels = 3
motion_generator = MotionBlurGenerator((psf_size, psf_size), device=device)

filters = motion_generator.step(batch_size=1)

physics = dinv.physics.BlurFFT(
img_size=(n_channels, self.img_size, self.img_size),
filter=filters["filter"],
device=device
)
elif self.task == "SRx4":
n_channels = 3
physics = Downsampling(img_size=(n_channels, self.img_size, self.img_size),
filter="bicubic",
factor=4,
device=device)
else:
raise Exception("Unknown task")

Expand Down
Loading
Loading