Skip to content

Geometric Methods in Machine Learning

Notifications You must be signed in to change notification settings

bekemax/GMML2024

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

These are seminar materials for the Geometric Methods in Machine Learning course (Spring 2024) by Prof. A.V. Bernstein at Sk. Materials were prepared by Oleg Kachan.

Seminar notebook Theme(s)
Sem1 Principal Component Analysis (PCA)
Sem2 Independent Component Analysis (ICA)
Sem3 Intrinsic dimension estimation
Based on paper: Levina, Bickel (2004), Maximum Likelihood Estimation of Intrinsic Dimension
Sem4 Nonlinear Dimensionality Reduction
1) Kernel PCA: Gaussian, polynomial, cosine, graph kernels
2) Metric Multidimensional Scaling (MDS)
3) Isomap
4) Locally Linear Embeddings (LLE)
5) Laplacian Eigenmaps (LE)
6) Local Tangent Space Alignment (LTSA)
7) non-Euclidean distance mods: p-Wasserstein
Sem5 Topological Data Analysis (TDA)
1) Simplicial homology, Betti numbers
2) Persistent diagrams, Wasserstein distance on them and stability
3) Persistent homology (PH) of graphs
4) Vectorization of topological features: Persistent images, Betti curves
5) Persistent homology of digital images (Obayashi, Hiraoka – https://arxiv.org/abs/1706.10082)
6) Deep sets (Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, Smola – https://arxiv.org/abs/1703.06114)

About

Geometric Methods in Machine Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%