Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
promiseve authored Jan 23, 2024
1 parent 9526690 commit b7b83c5
Showing 1 changed file with 23 additions and 0 deletions.
23 changes: 23 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,2 +1,25 @@
# MGRL
Multigroup Reinforcement learning for Electrolyte Repletion

## Overview

This repository presents a novel approach in healthcare data analytics, focusing on off-policy reinforcement learning methods for treatment policies. Our work is particularly tailored to the complex and diverse nature of patient populations, where individuals often present different chronic conditions requiring personalized treatment strategies.

## Introduction

Traditional reinforcement learning models in healthcare often overlook the heterogeneity within patient populations. To address this, our research implements a multi-group Gaussian process regression model within a fitted Q-iteration framework. This approach enables us to:

- Model diverse patient subgroups accurately.
- Tailor optimal treatment policies to each subgroup.
- Estimate these functions across the entire patient population.

## Application

We apply our Multi-Group Reinforcement Learning (MGRL) framework to the critical problem of formulating optimal treatment policies for electrolyte repletion in patients with pre-existing medical conditions.

## Key Features

- **Multi-Group Gaussian Process (MGGP) Regression Models**: Allow for precise modeling of different patient subgroups.
- **Fitted Q-Iteration Framework**: Ensures robust policy development and adaptation for each subgroup.
- **Whole Population Estimation**: Provides a comprehensive view of the patient population, enhancing the treatment policy's overall effectiveness.

0 comments on commit b7b83c5

Please sign in to comment.