Skip to content

A PyTorch implementation for StyleGAN with full features.

License

Notifications You must be signed in to change notification settings

beastars/StyleGAN.pytorch

 
 

Repository files navigation

StyleGAN.pytorch


[ChineseGirl Dataset]

Thanks to dataset provider:Copyright(c) 2018, seeprettyface.com, BUPT_GWY contributes the dataset.

Features

  • Progressive Growing Training
  • Exponential Moving Average
  • Equalized Learning Rate
  • PixelNorm Layer
  • Minibatch Standard Deviation Layer
  • Style Mixing Regularization
  • Using official tensorflow pretrained weights
  • Gradient Clipping
  • Truncation Trick
  • Multi-GPU Training
  • FP-16 Support
  • Conditional GAN

How to use

Requirements

  • yacs
  • tqdm
  • numpy
  • torch
  • torchvision
  • tensorflow(Optional, for ./convert.py)

Running the training script:

Train from scratch:

python train.py --config configs/sample.yaml

Using trained model:

Resume training from a checkpoint (start form 128x128):

python train.py --config config/sample.yaml --start_depth 5 --generator_file [] [--gen_shadow_file] --discriminator_file [] --gen_optim_file [] --dis_optim_file []

Style Mixing

python generate_mixing_figure.py --config config/sample.yaml --generator_file [] 


Convert from official format

python convert.py --config configs/sample_ffhq_1024.yaml --input_file PATH/karras2019stylegan-ffhq-1024x1024.pkl --output_file ffhq_1024_gen.pth

Generated samples


[FFHQ Dataset](128x128)

Using weights tranferred from official tensorflow repo.


[FFHQ Dataset](1024x1024)


[WebCaricatureDataset](128x128)

Thanks

Please feel free to open PRs / issues / suggestions here.

Reference

About

A PyTorch implementation for StyleGAN with full features.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%