A python script for making multi-dimentional reduced subset Design of Experiments(DOE) and fitting the data with Machine Learning(ML)
import pandas as pd
import matplotlib.pyplot as plt
import doe_machine_fit as doe
df = pd.read_csv("acsnano.csv")
var_prop_labels={'pce': 'Power Conversion Efficiency (%)',
'don_con': 'wt% Donor Concentration',
'spin_s': 'Spin Speed (rpm)',
'total_con': 'Total Concentration (mg/ml)',
}
doe.fit_svm(df, 'pce', ['don_con', 'spin_s', 'total_con'],gamma=0.15,
mark_err=0.1, var_prop_labels=var_prop_labels)
plt.gcf().savefig("example_figure.png", dpi=300)