Skip to content

Tensor parallelism is all you need. Run LLMs on an AI cluster at home using any device. Distribute the workload, divide RAM usage, and increase inference speed.

License

Notifications You must be signed in to change notification settings

b4rtaz/distributed-llama

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Distributed Llama

Distributed Llama

GitHub Actions Workflow Status License: MIT Support this project Discord

Tensor parallelism is all you need. Run LLMs on weak devices or make powerful devices even more powerful by distributing the workload and dividing the RAM usage. This project proves that it's possible split the workload of LLMs across multiple devices and achieve a significant speedup. Distributed Llama allows you to run huge LLMs in-house. The project uses TCP sockets to synchronize the state. You can easily configure your AI cluster by using a home router.

πŸ”₯ Setup Root Node by Single Command

Python 3 and C++ compiler required. The command will download the model and the tokenizer.

Model Purpose Size Command
TinyLlama 1.1B 3T Q40 Benchmark 844 MB python launch.py tinyllama_1_1b_3t_q40
Llama 3 8B Q40 Benchmark 6.32 GB python launch.py llama3_8b_q40
Llama 3 8B Instruct Q40 Chat, API 6.32 GB python launch.py llama3_8b_instruct_q40
Llama 3.1 8B Instruct Q40 Chat, API 6.32 GB python launch.py llama3_1_8b_instruct_q40
Llama 3.1 405B Instruct Q40 Chat, API 238 GB python launch.py llama3_1_405b_instruct_q40
Llama 3.2 1B Instruct Q40 Chat, API 1.7 GB python launch.py llama3_2_1b_instruct_q40
Llama 3.2 3B Instruct Q40 Chat, API 3.4 GB python launch.py llama3_2_3b_instruct_q40
Llama 3.3 70B Instruct Q40 Chat, API 40 GB python launch.py llama3_3_70b_instruct_q40

πŸ› οΈ Convert Model Manually

Supported architectures: Llama, Mixtral

🚧 Known Limitations

  • You can run Distributed Llama only on 1, 2, 4... 2^n nodes.
  • The maximum number of nodes is equal to the number of KV heads in the model #70.
  • CPU support only, GPU support is planned, optimized for (weights format Γ— buffer format):
    • ARM CPUs
      • βœ… F32 Γ— F32
      • ❌ F16 Γ— F32
      • βœ… Q40 Γ— F32
      • βœ… Q40 Γ— Q80
    • x86_64 AVX2 CPUs
      • βœ… F32 Γ— F32
      • ❌ F16 Γ— F32
      • βœ… Q40 Γ— F32
      • βœ… Q40 Γ— Q80

πŸ‘· Architecture

The project is split up into two parts:

  • Root node - it's responsible for loading the model and weights and forward them to workers. Also, it synchronizes the state of the neural network. The root node is also a worker, it processes own slice of the neural network.
  • Worker node - it processes own slice of the neural network. It doesn't require any configuration related to the model.

You always need the root node and you can add 2^n - 1 worker nodes to speed up the inference. The RAM usage of the neural network is split up across all nodes. The root node requires a bit more RAM than worker nodes.

🎹 Commands

  • dllama inference - run the inference with a simple benchmark,
  • dllama chat - run the CLI chat,
  • dllama worker - run the worker node,
  • dllama-api - run the API server.

Inference, Chat, API

Argument Description Example
--model <path> Path to model. dllama_model_meta-llama-3-8b_q40.m
--tokenizer <path> Tokenizer to model. dllama_tokenizer_llama3.t
--buffer-float-type <type> Float precision of synchronization. q80
--workers <workers> Addresses of workers (ip:port), separated by space. 10.0.0.1:9991 10.0.0.2:9991
--max-seq-len <n> The maximum sequence length, it helps to reduce the RAM usage. 4096

Inference, Chat, Worker, API

Argument Description Example
--nthreads <n> Amount of threads. Don't set a higher value than number of CPU cores. 4

Worker, API

Argument Description Example
--port <port> Binding port. 9999

Inference

Argument Description Example
--prompt <prompt> Initial prompt. "Hello World"
--steps <steps> Number of tokens to generate. 256

πŸ“Š Measurements

Average Token Generation Time

I - inference time of the root node, T - network transfer time of the root node.

Raspberry Pi 5 8GB

Weights = Q40, Buffer = Q80, nSamples = 16, switch = TP-Link LS1008G, tested on 0.3.1 version

Model 1 x RasPi 5 8 GB 2 x RasPi 5 8 GB 4 x RasPi 5 8 GB
Llama 2 7B 441.09 ms, 2.26 t/s
I: 434.84 ms, T: 5.25 ms
341.46 ms, 2.92 t/s
I: 257.78 ms, T: 83.27 ms
219.08 ms, 4.56 t/s πŸ”₯
I: 163.42 ms, T: 55.25 ms
Llama 3 8B 564.31 ms, 1.77 t/s
I: 556.67 ms, T: 6.17 ms
444.27 ms, 2.25 t/s
I: 362.73 ms, T: 80.11 ms
331.47 ms, 3.01 t/s πŸ”₯
I: 267.62 ms, T: 62.34 ms

Raspberry Pi 4B 8 GB

8 x Raspberry Pi 4B 8GB
8 x Raspberry Pi 4B 8GB

Distributed Llama running on 8 Raspberry Pi 4B devices
Distributed Llama running Llama 2 70B Q40 on 8 Raspberry Pi 4B devices

Weights = Q40, Buffer = Q80, nSamples = 16, switch = TP-Link LS1008G, tested on 0.1.0 version

Model 1 x RasPi 4B 8 GB 2 x RasPi 4B 8 GB 4 x RasPi 4B 8 GB 8 x RasPi 4B 8 GB
Llama 2 7B 1312.50 ms
I: 1307.94 ms, T: 1.81 ms
793.69 ms
I: 739.00 ms, T: 52.50 ms
494.00 ms πŸ”₯
I: 458.81 ms, T: 34.06 ms
588.19 ms
I: 296.69 ms, T: 289.75 ms
Llama 2 13B Not enough RAM 1497.19 ms
I: 1465.06 ms, T: 30.88 ms
848.19 ms πŸ”₯
I: 746.88 ms, T: 99.50 ms
1114.88 ms
I: 460.8 ms, T: 652.88 ms
Llama 2 70B Not enough RAM Not enough RAM Not enough RAM 4842.81 ms πŸ”₯
I: 2121.94 ms, T: 2719.62 ms

x86_64 CPU Cloud Server

Weights = Q40, Buffer = Q80, nSamples = 16, VMs = c3d-highcpu-30, tested on 0.1.0 version

Model 1 x VM 2 x VM 4 x VM
Llama 2 7B 101.81 ms
I: 101.06 ms, T: 0.19 ms
69.69 ms
I: 61.50 ms, T: 7.62 ms
53.69 ms πŸ”₯
I: 40.25 ms, T: 12.81 ms
Llama 2 13B 184.19 ms
I: 182.88 ms, T: 0.69 ms
115.38 ms
I: 107.12 ms, T: 7.81 ms
86.81 ms πŸ”₯
I: 66.25 ms, T: 19.94 ms
Llama 2 70B 909.69 ms
I: 907.25 ms, T: 1.75 ms
501.38 ms
I: 475.50 ms, T: 25.00 ms
293.06 ms πŸ”₯
I: 264.00 ms, T: 28.50 ms

Network Transfer for Generating Token

F32 Buffer

Model 2 devices 4 devices 8 devices
Llama 3 8B 2048 kB 6144 kB 14336 kB

Q80 Buffer

Model 2 devices 4 devices 8 devices
Llama 3 8B 544 kB 1632 kB 3808 kB

πŸ“Ÿ Setup Raspberry Pi Devices

  1. Install Raspberry Pi OS Lite (64 bit) on your Raspberry Pi devices. This OS doesn't have desktop environment.
  2. Connect all devices to your switch or router.
  3. Connect to all devices via SSH.
  1. Install Git:
sudo apt install git
  1. Clone this repository and compile Distributed Llama on all devices:
git clone https://github.com/b4rtaz/distributed-llama.git
make dllama
make dllama-api
  1. Transfer weights and the tokenizer file to the root device.
  2. Optional: assign static IP addresses.
sudo ip addr add 10.0.0.1/24 dev eth0 # 1th device
sudo ip addr add 10.0.0.2/24 dev eth0 # 2th device
  1. Run worker nodes on worker devices:
sudo nice -n -20 ./dllama worker --port 9998 --nthreads 4
  1. Run root node on the root device:
sudo nice -n -20 ./dllama inference --model dllama_model_meta-llama-3-8b_q40.m --tokenizer dllama_tokenizer_llama3.t --buffer-float-type q80 --prompt "Hello world" --steps 16 --nthreads 4 --workers 10.0.0.2:9998

To add more worker nodes, just add more addresses to the --workers argument.

./dllama inference ... --workers 10.0.0.2:9998 10.0.0.3:9998 10.0.0.4:9998

πŸ’» Setup computers with MacOS, Linux, or Windows

You need x86_64 AVX2 CPUs or ARM CPUs. Different devices may have different CPUs.

MacOS or Linux

The below instructions are for Debian-based distributions but you can easily adapt them to your distribution, macOS.

  1. Install Git and GCC:
sudo apt install git build-essential
  1. Clone this repository and compile Distributed Llama on all computers:
git clone https://github.com/b4rtaz/distributed-llama.git
make dllama
make dllama-api

Continue to point 3.

Windows

  1. Install Git and Mingw (via Chocolatey):
choco install mingw
  1. Clone this repository and compile Distributed Llama on all computers:
git clone https://github.com/b4rtaz/distributed-llama.git
make dllama
make dllama-api

Continue to point 3.

Run Cluster

  1. Transfer weights and the tokenizer file to the root computer.
  2. Run worker nodes on worker computers:
./dllama worker --port 9998 --nthreads 4
  1. Run root node on the root computer:
./dllama inference --model dllama_model_meta-llama-3-8b_q40.m --tokenizer dllama_tokenizer_llama3.t --buffer-float-type q80 --prompt "Hello world" --steps 16 --nthreads 4 --workers 192.168.0.1:9998

To add more worker nodes, just add more addresses to the --workers argument.

./dllama inference ... --workers 192.168.0.1:9998 192.168.0.2:9998 192.168.0.3:9998

βœ‹ Contribution

Feel free to contribute to this project. For small changes, simply create a new merge request. For larger changes, please create an issue to discuss your plans. Please follow these guidelines when contributing:

  • Make only minimal changes and avoid modifying files that are not necessary.
  • Ensure the code is compatible across all supported systems and CPUs.
  • This repository is maintained in English.

πŸ’‘ License

This project is released under the MIT license.

πŸ“– Citation

@misc{dllama,
  author = {BartΕ‚omiej Tadych},
  title = {Distributed Llama},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/b4rtaz/distributed-llama}},
  commit = {7eb77ca93ec0d502e28d36b6fb20039b449cbea4}
}

About

Tensor parallelism is all you need. Run LLMs on an AI cluster at home using any device. Distribute the workload, divide RAM usage, and increase inference speed.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •  

Languages