follow me for more: https://linktr.ee/az1fr3
AudioCraft es una biblioteca de PyTorch para la investigación en aprendizaje profundo sobre generación de audio. AudioCraft contiene código de inferencia y entrenamiento para dos modelos generativos de IA de última generación que producen audio de alta calidad: AudioGen y MusicGen.
AudioCraft requiere Python 3.9 y PyTorch 2.0.0. Para instalar AudioCraft, puedes ejecutar lo siguiente
# Best to make sure you have torch installed first, in particular before installing xformers.
# Don't run this if you already have PyTorch installed.
pip install 'torch>=2.0'
# Then proceed to one of the following
pip install -U audiocraft # stable release
pip install -U git+https://[email protected]/facebookresearch/audiocraft#egg=audiocraft # bleeding edge
pip install -e . # or if you cloned the repo locally (mandatory if you want to train).
We also recommend having ffmpeg
installed, either through your system or Anaconda:
sudo apt-get install ffmpeg
# Or if you are using Anaconda or Miniconda
conda install 'ffmpeg<5' -c conda-forge
En este momento, AudioCraft contiene el código de entrenamiento y el código de inferencia para:
-
MusicGen: A state-of-the-art controllable text-to-music model.
-
AudioGen: A state-of-the-art text-to-sound model.
-
EnCodec: A state-of-the-art high fidelity neural audio codec.
-
Multi Band Diffusion: An EnCodec compatible decoder using diffusion.
AudioCraft contiene componentes de PyTorch para la investigación en aprendizaje profundo en audio y tuberías de entrenamiento para los modelos desarrollados. Para una introducción general a los principios de diseño de AudioCraft e instrucciones para desarrollar tu propia tubería de entrenamiento, consulta el AudioCraft training documentation.
Para reproducir trabajos existentes y utilizar las tuberías de entrenamiento desarrolladas, consulta las instrucciones para cada modelo específico que proporciona indicaciones para la configuración, ejemplos de mallas y información específica del modelo/tarea, así como preguntas frecuentes (FAQ).
We provide some API documentation for AudioCraft.
Yes! We provide the training code for EnCodec, MusicGen and Multi Band Diffusion.
Hugging Face stored the model in a specific location, which can be overriden by setting the AUDIOCRAFT_CACHE_DIR
environment variable.
- The code in this repository is released under the MIT license as found in the LICENSE file.
- The models weights in this repository are released under the CC-BY-NC 4.0 license as found in the LICENSE_weights file.
For the general framework of AudioCraft, please cite the following.
@article{copet2023simple,
title={Simple and Controllable Music Generation},
author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre Défossez},
year={2023},
journal={arXiv preprint arXiv:2306.05284},
}
When referring to a specific model, please cite as mentioned in the model specific README, e.g ./docs/MUSICGEN.md, ./docs/AUDIOGEN.md, etc.