Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
MichaelFu1998-create committed May 2, 2022
1 parent 4de9b10 commit 333fa0a
Show file tree
Hide file tree
Showing 288 changed files with 464,090 additions and 1 deletion.
Binary file added .DS_Store
Binary file not shown.
111 changes: 111 additions & 0 deletions GPT2SP.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
import torch.nn as nn
from transformers import GPT2Model, GPT2PreTrainedModel
import torch


class GPT2ForSequenceClassification(GPT2PreTrainedModel):
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]

def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.dense1 = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
self.dense2 = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)

self.init_weights()

# Model parallel
self.model_parallel = False
self.device_map = None


def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]

# MLP Layer
hidden_states = self.dense1(hidden_states)
hidden_states = self.dense2(hidden_states)

logits = self.score(hidden_states)

if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]

assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)

pooled_logits = logits[range(batch_size), sequence_lengths]

loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = nn.L1Loss()
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))

if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output

return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
Loading

0 comments on commit 333fa0a

Please sign in to comment.