-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4de9b10
commit 333fa0a
Showing
288 changed files
with
464,090 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
from transformers.modeling_outputs import SequenceClassifierOutputWithPast | ||
import torch.nn as nn | ||
from transformers import GPT2Model, GPT2PreTrainedModel | ||
import torch | ||
|
||
|
||
class GPT2ForSequenceClassification(GPT2PreTrainedModel): | ||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] | ||
|
||
def __init__(self, config): | ||
super().__init__(config) | ||
self.num_labels = config.num_labels | ||
self.transformer = GPT2Model(config) | ||
self.dense1 = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) | ||
self.dense2 = nn.Linear(4 * config.n_embd, config.n_embd, bias=False) | ||
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) | ||
|
||
self.init_weights() | ||
|
||
# Model parallel | ||
self.model_parallel = False | ||
self.device_map = None | ||
|
||
|
||
def forward( | ||
self, | ||
input_ids=None, | ||
past_key_values=None, | ||
attention_mask=None, | ||
token_type_ids=None, | ||
position_ids=None, | ||
head_mask=None, | ||
inputs_embeds=None, | ||
labels=None, | ||
use_cache=None, | ||
output_attentions=None, | ||
output_hidden_states=None, | ||
return_dict=None, | ||
): | ||
r""" | ||
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | ||
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | ||
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | ||
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | ||
""" | ||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
transformer_outputs = self.transformer( | ||
input_ids, | ||
past_key_values=past_key_values, | ||
attention_mask=attention_mask, | ||
token_type_ids=token_type_ids, | ||
position_ids=position_ids, | ||
head_mask=head_mask, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
) | ||
hidden_states = transformer_outputs[0] | ||
|
||
# MLP Layer | ||
hidden_states = self.dense1(hidden_states) | ||
hidden_states = self.dense2(hidden_states) | ||
|
||
logits = self.score(hidden_states) | ||
|
||
if input_ids is not None: | ||
batch_size, sequence_length = input_ids.shape[:2] | ||
else: | ||
batch_size, sequence_length = inputs_embeds.shape[:2] | ||
|
||
assert ( | ||
self.config.pad_token_id is not None or batch_size == 1 | ||
), "Cannot handle batch sizes > 1 if no padding token is defined." | ||
if self.config.pad_token_id is None: | ||
sequence_lengths = -1 | ||
else: | ||
if input_ids is not None: | ||
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 | ||
else: | ||
sequence_lengths = -1 | ||
logger.warning( | ||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | ||
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | ||
) | ||
|
||
pooled_logits = logits[range(batch_size), sequence_lengths] | ||
|
||
loss = None | ||
if labels is not None: | ||
if self.num_labels == 1: | ||
# We are doing regression | ||
loss_fct = nn.L1Loss() | ||
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) | ||
else: | ||
loss_fct = CrossEntropyLoss() | ||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | ||
|
||
if not return_dict: | ||
output = (pooled_logits,) + transformer_outputs[1:] | ||
return ((loss,) + output) if loss is not None else output | ||
|
||
return SequenceClassifierOutputWithPast( | ||
loss=loss, | ||
logits=pooled_logits, | ||
past_key_values=transformer_outputs.past_key_values, | ||
hidden_states=transformer_outputs.hidden_states, | ||
attentions=transformer_outputs.attentions, | ||
) |
Oops, something went wrong.