This package offers an R
implementation of Universal Soil Loss
Equation
(USLE).
You can find here a collection of functions to estimate main factors:
R-factor, K-factor, LS-factor and C-factor. The package
usesterra
and
Rsagacmd
in the
background. SAGA GIS
need to be installed on your machine as well.
Disclaimer! This package is under development right now. It was tested on Windows 10 only. However, its operability fully depends on
terra
andRsagacmd
packages. Therefore it is expected thatrusleR
should work on Linux-based machines as well.
You can install the development version of rusleR from GitHub with:
# install.packages("devtools")
devtools::install_github("atsyplenkov/rusleR")
The brief introduction to the rusleR
package were made at the
IAHS-WasWac workshop in December
2022. You can see it on YouTube:
This is a basic example which shows you how to calculate LS_alpine (Schmidt et al., 2019):
library(rusleR)
library(Rsagacmd)
library(terra)
# initiate a saga object
saga <- saga_gis(raster_backend = "terra")
# load DEM
f <- system.file("extdata/dem.tif", package="rusleR")
DEM <- rast(f)
# calculate LS-alpine
ls <- ls_alpine(dem = DEM)
As a result of ls_alpine()
you receive a SpatRaster
object:
ls
#> class : SpatRaster
#> dimensions : 78, 54, 1 (nrow, ncol, nlyr)
#> resolution : 27.30756, 27.30756 (x, y)
#> extent : 337615.4, 339090, 4814626, 4816756 (xmin, xmax, ymin, ymax)
#> coord. ref. : WGS 84 / UTM zone 38N (EPSG:32638)
#> source(s) : memory
#> name : LSalpine
#> min value : 0.0000
#> max value : 660.0054
With the help of get_glored()
function you can quickly download and
crop to AOI a Global Rainfall Erosivity Database map
(GLORED).
It was created by Panagos et al.
(2017) based on
in-situ measurements from 3,625 stations. This GLORED was used to
develop a global erosivity map at 30 arc-seconds(~1 km) based on a
Gaussian Process Regression(GPR).
library(rusleR)
library(terra)
f <- system.file("extdata/extent.shp", package="rusleR")
v <- vect(f)
r_factor <- get_glored(v)
As a result of get_glored()
you receive a SpatRaster
object:
r_factor
#> class : SpatRaster
#> dimensions : 2, 2, 1 (nrow, ncol, nlyr)
#> resolution : 809.8197, 809.8197 (x, y)
#> extent : 337544.9, 339164.5, 4814761, 4816381 (xmin, xmax, ymin, ymax)
#> coord. ref. : +proj=utm +zone=38 +datum=WGS84 +units=m +no_defs
#> source(s) : memory
#> name : out
#> min value : 682.1308
#> max value : 820.8951
While rusleR
does not redistribute the data or provide it in any way,
we encourage users to cite original papers when using this package. E.g.
to cite Panagos et al. (2017) when using GLORED, Hengl et al. (2017)
when using SoilGrids and Schmidt et al. (2019) when using
LSalpine:
Panagos, Panos, Pasquale Borrelli, Katrin Meusburger, Bofu Yu, Andreas Klik, Kyoung Jae Lim, Jae E. Yang, et al. “Global Rainfall Erosivity Assessment Based on High-Temporal Resolution Rainfall Records.” Scientific Reports 7, no. 1 (June 23, 2017): 4175. https://doi.org/10.1038/s41598-017-04282-8.
Hengl, Tomislav, Jorge Mendes de Jesus, Gerard B. M. Heuvelink, Maria Ruiperez Gonzalez, Milan Kilibarda, Aleksandar Blagotić, Wei Shangguan, et al. “SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.” PLOS ONE 12, no. 2 (February 16, 2017): e0169748. https://doi.org/10.1371/journal.pone.0169748.
Schmidt, Simon, Simon Tresch, and Katrin Meusburger. “Modification of the RUSLE Slope Length and Steepness Factor (LS-Factor) Based on Rainfall Experiments at Steep Alpine Grasslands.” MethodsX 6 (2019): 219–29. https://doi.org/10.1016/j.mex.2019.01.004.
- K-factor functions
- Watem/Sedem functions
- Vignettes
- tidy-loader disclaimer (see
tidyterra
package) - New radar-based R factor (https://esdac.jrc.ec.europa.eu/themes/satellite-based-global-r-factor)
- SDR estimation (see Batista et al., 2021)
- Connectivity index (see Borselli et al., 2008)
- IC by Cavalli et al., 2013
- SDR by Vigiak et al., 2012
- C-factor????
- Should I use WhiteboxGeo tools in a backend instead of SAGA??
This package was developed in accordance to the Development program of the Interdisciplinary Scientific and Educational School of M.V. Lomonosov Moscow State University “Future Planet and Global Environmental Change”