-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvary_params.sh
30 lines (29 loc) · 1.17 KB
/
vary_params.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#!/bin/bash
#SBATCH --job-name=zero
#SBATCH --nodes=1
#SBATCH --gpus-per-node=1
#SBATCH --exclusive
#SBATCH --time=00:10:00
#SBATCH --account=def-ssanner
#SBATCH --cpus-per-task=8
#SBATCH --mem=32G
#SBATCH --mail-user=<[email protected]>
#SBATCH --mail-type=ALL
#wandb offline
#wandb online -num_run
#wandb agent atoroghi/pre-critiquing/xydr8uhv
#python3 launch.py -epochs 1 -save_each 1 -kg no_kg
source ~/projects/def-ssanner/atoroghi/project/ENV2/bin/activate
cd ~/projects/def-ssanner/atoroghi/project/cqd
#python3 nested_cv_zero.py -tune_name soft_best -reg_type gauss -loss_type softplus -reduce_type sum -optim_type adagrad -sample_type split_rev -init_type uniform -kg kg
#python3 nested_cv_zero.py -tune_name svd_neg_soft -reg_type gauss -loss_type softplus -reduce_type sum -optim_type adagrad -sample_type split_reg -init_type uniform -learning_rel freeze -kg no_kg
#python3 inner_cv.py -tune_name gaussindirect -fold 0
for dataset in Movielens; do
for rank in 50 100; do
for reg in 0.001 0.01 0.1; do
for batch_size in 300 500 1000; do
sbatch --export=DATA=${dataset},RANK=${rank},REG=${reg},BATCH_SIZE=${batch_size} NewPA_job.sh
done
done
done
done