Skip to content

Commit

Permalink
Merge pull request #992 from duncandc/rotations_devel
Browse files Browse the repository at this point in the history
Adding vector rotation utilities to halotools.utils
  • Loading branch information
duncandc authored Jun 8, 2020
2 parents 5cde82c + 0e8b5e9 commit 4fb8558
Show file tree
Hide file tree
Showing 11 changed files with 1,516 additions and 0 deletions.
2 changes: 2 additions & 0 deletions halotools/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,5 @@
from .distribution_matching import *
from .probabilistic_binning import fuzzy_digitize
from .conditional_percentile import sliding_conditional_percentile
from .vector_utilities import *
from .rotate_vector_collection import rotate_vector_collection
195 changes: 195 additions & 0 deletions halotools/utils/mcrotations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
"""
A set of rotation utilites that apply monte carlo
roations to collections of 2- and 3-dimensional vectors
"""


from __future__ import (division, print_function, absolute_import,
unicode_literals)
import numpy as np
from astropy.utils.misc import NumpyRNGContext
from .vector_utilities import *
from .rotate_vector_collection import rotate_vector_collection
from .rotations2d import rotation_matrices_from_angles as rotation_matrices_from_angles_2d
from .rotations3d import rotation_matrices_from_angles as rotation_matrices_from_angles_3d


__all__=['random_rotation_3d',
'random_rotation_2d',
'random_perpendicular_directions',
'random_unit_vectors_3d',
'random_unit_vectors_2d']
__author__ = ['Duncan Campbell']


def random_rotation_3d(vectors, seed=None):
r"""
Apply a random rotation to a set of 3d vectors.
Parameters
----------
vectors : ndarray
Numpy array of shape (npts, 3) storing a collection of 3d vectors
seed : int, optional
Random number seed
Returns
-------
rotated_vectors : ndarray
Numpy array of shape (npts, 3) storing a collection of 3d vectors
Example
-------
Create a random set of 3D unit vectors.
>>> npts = 1000
>>> x1 = random_unit_vectors_3d(npts)
Randomly rotate these vectors.
>>> x2 = random_rotation_3d(x1)
"""

with NumpyRNGContext(seed):
ran_direction = random_unit_vectors_3d(1)[0]
ran_angle = np.random.random(size=1)*(np.pi)

ran_rot = rotation_matrices_from_angles_3d(ran_angle, ran_direction)

return rotate_vector_collection(ran_rot, vectors)


def random_rotation_2d(vectors, seed=None):
r"""
Apply a random rotation to a set of 2d vectors.
Parameters
----------
vectors : ndarray
Numpy array of shape (npts, 2) storing a collection of 2d vectors
seed : int, optional
Random number seed
Returns
-------
rotated_vectors : ndarray
Numpy array of shape (npts, 2) storing a collection of 2d vectors
Example
-------
Create a random set of 2D unit vectors.
>>> npts = 1000
>>> x1 = random_unit_vectors_2d(npts)
Randomly rotate these vectors.
>>> x2 = random_rotation_2d(x1)
"""

with NumpyRNGContext(seed):
ran_angle = np.random.random(size=1)*(np.pi)

ran_rot = rotation_matrices_from_angles_2d(ran_angle)

return rotate_vector_collection(ran_rot, vectors)


def random_perpendicular_directions(v, seed=None):
r"""
Given an input list of 3D vectors, v, return a list of 3D vectors
such that each returned vector has unit-length and is
orthogonal to the corresponding vector in v.
Parameters
----------
v : ndarray
Numpy array of shape (npts, 3) storing a collection of 3d vectors
seed : int, optional
Random number seed used to choose a random orthogonal direction
Returns
-------
result : ndarray
Numpy array of shape (npts, 3)
Example
-------
Create a random set of 3D unit vectors.
>>> npts = 1000
>>> x1 = random_unit_vectors_3d(npts)
For each vector in x1, create a perpendicular vector
>>> x2 = random_perpendicular_directions(x1)
"""

v = np.atleast_2d(v)
npts = v.shape[0]

with NumpyRNGContext(seed):
w = random_unit_vectors_3d(npts)

vnorms = elementwise_norm(v).reshape((npts, 1))
wnorms = elementwise_norm(w).reshape((npts, 1))

e_v = v/vnorms
e_w = w/wnorms

v_dot_w = elementwise_dot(e_v, e_w).reshape((npts, 1))

e_v_perp = e_w - v_dot_w*e_v
e_v_perp_norm = elementwise_norm(e_v_perp).reshape((npts, 1))

return e_v_perp/e_v_perp_norm


def random_unit_vectors_3d(npts):
r"""
Generate random 3D unit vectors.
Parameters
----------
npts : int
number of vectors
Returns
-------
result : numpy.array
Numpy array of shape (npts, 3) containing random unit vectors
"""

ndim = 3
x = np.random.normal(size=(npts,ndim), scale=1.0)
r = np.sqrt(np.sum((x)**2, axis=-1))

return (1.0/r[:,np.newaxis])*x


def random_unit_vectors_2d(npts):
r"""
Generate random 2D unit vectors.
Parameters
----------
npts : int
number of vectors
Returns
-------
result : numpy.array
Numpy array of shape (npts, 2) containing random unit vectors
"""

r = 1.0
phi = np.random.uniform(0.0, 2.0*np.pi, size=(npts,))
x = r*np.cos(phi)
y = r*np.sin(phi)

return np.vstack((x,y)).T


88 changes: 88 additions & 0 deletions halotools/utils/rotate_vector_collection.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
"""
A function to rotate collections of n-dimensional vectors
"""

from __future__ import (division, print_function, absolute_import,
unicode_literals)
import numpy as np
from .vector_utilities import (elementwise_dot, elementwise_norm,
normalized_vectors, angles_between_list_of_vectors)


__all__=['rotate_vector_collection',]
__author__ = ['Duncan Campbell', 'Andrew Hearin']

def rotate_vector_collection(rotation_matrices, vectors, optimize=False):
r"""
Given a collection of rotation matrices and a collection of n-dimensional vectors,
apply an asscoiated matrix to rotate corresponding vector(s).
Parameters
----------
rotation_matrices : ndarray
The options are:
1.) array of shape (npts, ndim, ndim) storing a collection of rotation matrices.
2.) array of shape (ndim, ndim) storing a single rotation matrix
vectors : ndarray
The corresponding options for above are:
1.) array of shape (npts, ndim) storing a collection of ndim-dimensional vectors
2.) array of shape (npts, ndim) storing a collection of ndim-dimensional vectors
Returns
-------
rotated_vectors : ndarray
Numpy array of shape (npts, ndim) storing a collection of ndim-dimensional vectors
Notes
-----
This function is set up to preform either rotation operations on a single collection \
of vectors, either applying a single rotation matrix to all vectors in the collection,
or applying a unique rotation matrix to each vector in the set.
The behavior of the function is determined by the arguments supplied by the user.
Examples
--------
In this example, we'll randomly generate two sets of unit-vectors, `v0` and `v1`.
We'll use the `rotation_matrices_from_vectors` function to generate the
rotation matrices that rotate each `v0` into the corresponding `v1`.
Then we'll use the `rotate_vector_collection` function to apply each
rotation, and verify that we recover each of the `v1`.
>>> from halotools.utils.rotations3d import rotation_matrices_from_vectors
>>> from halotools.utils import normalized_vectors
>>> npts, ndim = int(1e4), 3
>>> v0 = normalized_vectors(np.random.random((npts, ndim)))
>>> v1 = normalized_vectors(np.random.random((npts, ndim)))
>>> rotation_matrices = rotation_matrices_from_vectors(v0, v1)
>>> v2 = rotate_vector_collection(rotation_matrices, v0)
>>> assert np.allclose(v1, v2)
"""

ndim_rotm = np.shape(rotation_matrices)[-1]
ndim_vec = np.shape(vectors)[-1]
assert ndim_rotm==ndim_vec

if len(np.shape(vectors))==2:
ntps, ndim = np.shape(vectors)
nsets = 0
elif len(np.shape(vectors))==3:
nsets, ntps, ndim = np.shape(vectors)

# apply same rotation matrix to all vectors
if (len(np.shape(rotation_matrices)) == 2):
if nsets == 1:
vectors = vectors[0]
return np.dot(rotation_matrices, vectors.T).T
# rotate each vector by associated rotation matrix
else:
ein_string = 'ijk,ik->ij'
n1, ndim = np.shape(vectors)

try:
return np.einsum(ein_string, rotation_matrices, vectors, optimize=optimize)
except TypeError:
return np.einsum(ein_string, rotation_matrices, vectors)


Loading

0 comments on commit 4fb8558

Please sign in to comment.