-
Notifications
You must be signed in to change notification settings - Fork 5
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add ZTF alerts notebook #479
base: main
Are you sure you want to change the base?
Conversation
Check out this pull request on See visual diffs & provide feedback on Jupyter Notebooks. Powered by ReviewNB |
Click here to view all benchmarks. |
Codecov ReportAll modified and coverable lines are covered by tests ✅
Additional details and impacted files@@ Coverage Diff @@
## main #479 +/- ##
=======================================
Coverage 97.67% 97.67%
=======================================
Files 39 39
Lines 1546 1546
=======================================
Hits 1510 1510
Misses 36 36 ☔ View full report in Codecov by Sentry. |
"# Search for SN-like light curves in ZTF alerts\n", | ||
"\n", | ||
"We will use lsdb package to load a Hats catalog with [ZTF](https://www.ztf.caltech.edu) alerts.\n", | ||
"The dataset contains all alerts sent from the beginning of the survey until 2023-09-13 corresponding to objects having at least 20 detections.\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you know when was the beginning of the survey?
"source": [ | ||
"# Search for SN-like light curves in ZTF alerts\n", | ||
"\n", | ||
"We will use lsdb package to load a Hats catalog with [ZTF](https://www.ztf.caltech.edu) alerts.\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hats -> HATS
"source": [ | ||
"### Helper function for light-curve plotting\n", | ||
"\n", | ||
"The function accepts a pandas data frame and plot a light curve." |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
plot -> plots
"These transformed columns are \"nested data frames\", so each item could be represented by a small pandas dataframe.\n", | ||
"We are going to have three nested columns:\n", | ||
"\n", | ||
"1. \"lc\", for light curves, each point corrersponds to some alert (detection)\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
corresponds -> corresponding
"2. \"nondet\", for non-detections (upper limits)\n", | ||
"3. \"ref\", for ZTF reference objects associated with alerts\n", | ||
"\n", | ||
"Here we do not download any data yet, all data access and analysis happens only after `.compute()` is called.\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Here we have not downloaded ....
" <td>...</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>3458764513820540928</th>\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It is super confusing that these two catalogs have the same name
{ | ||
"attachments": { | ||
"8cf4f6f1-b501-4ff8-970c-a1645c8009ce.png": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAADECAYAAADDLmjeAAAMTGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIQQIREBK6E0QkRJASggtgPQiiEpIAoQSY0JQsaOLCq5dRLCiqyAuuroCstiwK4ti74sFBWVdLNiVNyGALvvK9+b75s5//znzzzln5pYBgN7Ol0pzUE0AciV5sphgf9aEpGQWqRNQARkAYAi0+AK5lBMVFQ7vwGD79/L2OkCU7RUHpdY/+/9r0RKK5AIAkCiI04RyQS7EvwKANwmksjwAiFLIm0/PkyrxWoh1ZNBBiKuUOEOFm5Q4TYUv9dvExXAhfgwAWZ3Pl2UAoNEDeVa+IAPq0GG0wEkiFEsg9oPYJzd3qhDi+RDbQBs4J12pz077Tifjb5ppQ5p8fsYQVsXSX8gBYrk0hz/z/0zH/y65OYrBOaxhVc+UhcQoY4Z5e5w9NUyJ1SF+L0mLiIRYGwAUFwv77ZWYmakIiVfZozYCORfmDDAhHifPieUN8DFCfkAYUK4+QNMlORHhAzaF6eIgpQ3MH1omzuPFQawHcZVIHhg7YHNMNjVmcN7r6TIuZ4Dv5Mv6fVDqf1Vkx3NU+ph2pog3oI85FmTGJUJMhTggX5wQAbEGxBHy7NiwAZuUgkxuxKCNTBGjjMUCYplIEuyv0sdK02VBMQP2u3Plg7FjxzLFvIgBfDkvMy5ElSvssYDf7z+MBesRSTjxgzoi+YTwwViEooBAVew4WSSJj1XxuJ40zz9GNRa3k+ZEDdjj/qKcYCVvBnGcPD92cGx+HtycKn28SJoXFafyEy/P4odGqfzB94FwwAUBgAUUsKaBqSALiFu767vhnaonCPCBDGQAEXAYYAZHJPb3SOA1FhSAPyESAfnQOP/+XhHIh/yXYaySEw9xqqsDSB/oU6pkgycQ54IwkAPvFf1KkiEPEsBjyIj/4REfVgGMIQdWZf+/5wfZbwwHMuEDjGJwRhZ90JIYSAwghhCDiLa4Ae6De+Hh8OoHqzPOxj0G4/hmT3hCaCM8JFwjtBNuTREXyoZ5OR60Q/2ggfykfZ8f3ApquuL+uDdUh8o4EzcADrgLnIeD+8KZXSHLHfBbmRXWMO2/RfDdCg3YUZwoKGUExY9iM3ykhp2G65CKMtff50fla9pQvrlDPcPn536XfSFsw4ZbYkuwA9gZ7Dh2DmvC6gELO4o1YC3YYSUe2nGP+3fc4Gwx/f5kQ53he+bbyiozKXeqcepy+qzqyxPNyFM+jNyp0pkycUZmHosDvxgiFk8icBzFcnZydgFA+f1Rvd5eR/d/VxBmyzdu4R8AeB/t6+v77RsXehSAX9zhK+HQN86GDT8tagCcPSRQyPJVHK68EOCbgw6fPn1gDMyBDYzHGbgBL+AHAkEoiARxIAlMht5nwn0uA9PBbLAAFIESsBKsA+VgC9gOqsDPYD+oB03gODgNLoBL4Bq4A3dPB3gOesBb8AlBEBJCQxiIPmKCWCL2iDPCRnyQQCQciUGSkFQkA5EgCmQ2shApQVYj5cg2pBr5BTmEHEfOIW3ILeQB0oW8Qj6iGKqO6qBGqBU6GmWjHDQMjUMnoRnoNLQAXYQuR8vQSnQPWoceRy+g19B29DnaiwFMDWNippgDxsa4WCSWjKVjMmwuVoyVYpVYLdYI1/kK1o51Yx9wIs7AWbgD3MEheDwuwKfhc/FleDlehdfhJ/Er+AO8B/9KoBEMCfYETwKPMIGQQZhOKCKUEnYSDhJOwWepg/CWSCQyidZEd/gsJhGziLOIy4ibiHuJx4htxEfEXhKJpE+yJ3mTIkl8Uh6piLSBtId0lHSZ1EF6T1Yjm5CdyUHkZLKEXEguJe8mHyFfJj8lf6JoUiwpnpRIipAyk7KCsoPSSLlI6aB8ompRrane1DhqFnUBtYxaSz1FvUt9raamZqbmoRatJlabr1amtk/trNoDtQ/q2up26lz1FHWF+nL1XerH1G+pv6bRaFY0P1oyLY+2nFZNO0G7T3uvwdBw1OBpCDXmaVRo1Glc1nhBp9At6Rz6ZHoBvZR+gH6R3q1J0bTS5GryNedqVmge0ryh2avF0BqjFamVq7VMa7fWOa1ObZK2lXagtlB7kfZ27RPajxgYw5zBZQgYCxk7GKcYHTpEHWsdnk6WTonOzzqtOj262rouugm6M3QrdA/rtjMxphWTx8xhrmDuZ15nfhxhNIIzQjRi6YjaEZdHvNMbqeenJ9Ir1turd03voz5LP1A/W3+Vfr3+PQPcwM4g2mC6wWaDUwbdI3VGeo0UjCweuX/kbUPU0M4wxnCW4XbDFsNeI2OjYCOp0QajE0bdxkxjP+Ms47XGR4y7TBgmPiZik7UmR02esXRZHFYOq4x1ktVjamgaYqow3WbaavrJzNos3qzQbK/ZPXOqOds83XytebN5j4WJxXiL2RY1FrctKZZsy0zL9ZZnLN9ZWVslWi22qrfqtNaz5lkXWNdY37Wh2fjaTLOptLlqS7Rl22bbbrK9ZIfaudpl2lXYXbRH7d3sxfab7NtGEUZ5jJKMqhx1w0HdgeOQ71Dj8MCR6RjuWOhY7/hitMXo5NGrRp8Z/dXJ1SnHaYfTnTHaY0LHFI5pHPPK2c5Z4FzhfHUsbWzQ2HljG8a+dLF3EblsdrnpynAd77rYtdn1i5u7m8yt1q3L3cI91X2j+w22DjuKvYx91oPg4e8xz6PJ44Onm2ee537Pv7wcvLK9dnt1jrMeJxq3Y9wjbzNvvvc273Yflk+qz1afdl9TX75vpe9DP3M/od9Ov6ccW04WZw/nhb+Tv8z/oP87rid3DvdYABYQHFAc0BqoHRgfWB54P8gsKCOoJqgn2DV4VvCxEEJIWMiqkBs8I56AV83rCXUPnRN6Mkw9LDasPOxhuF24LLxxPDo+dPya8XcjLCMkEfWRIJIXuSbyXpR11LSo36KJ0VHRFdFPYsbEzI45E8uInRK7O/ZtnH/cirg78TbxivjmBHpCSkJ1wrvEgMTVie0TRk+YM+FCkkGSOKkhmZSckLwzuXdi4MR1EztSXFOKUq5Psp40Y9K5yQaTcyYfnkKfwp9yIJWQmpi6O/UzP5Jfye9N46VtTOsRcAXrBc+FfsK1wi6Rt2i16Gm6d/rq9M4M74w1GV2Zvpmlmd1irrhc/DIrJGtL1rvsyOxd2X05iTl7c8m5qbmHJNqSbMnJqcZTZ0xtk9pLi6Tt0zynrZvWIwuT7ZQj8knyhjwd+KPforBR/KB4kO+TX5H/fnrC9AMztGZIZrTMtJu5dObTgqCCn2bhswSzmmebzl4w+8Eczpxtc5G5aXOb55nPWzSvY37w/KoF1AXZC34vdCpcXfhmYeLCxkVGi+YvevRD8A81RRpFsqIbi70Wb1mCLxEvaV06dumGpV+LhcXnS5xKSks+LxMsO//jmB/Lfuxbnr68dYXbis0riSslK6+v8l1VtVprdcHqR2vGr6lby1pbvPbNuinrzpW6lG5ZT12vWN9eFl7WsMFiw8oNn8szy69V+Ffs3Wi4cenGd5uEmy5v9ttcu8VoS8mWj1vFW29uC95WV2lVWbqduD1/+5MdCTvO/MT+qXqnwc6SnV92SXa1V8VUnax2r67ebbh7RQ1ao6jp2pOy59LPAT831DrUbtvL3FuyD+xT7Hv2S+ov1/eH7W8+wD5Q+6vlrxsPMg4W1yF1M+t66jPr2xuSGtoOhR5qbvRqPPib42+7mkybKg7rHl5xhHpk0ZG+owVHe49Jj3Ufzzj+qHlK850TE05cPRl9svVU2Kmzp4NOnzjDOXP0rPfZpnOe5w6dZ5+vv+B2oa7FteXg766/H2x1a6276H6x4ZLHpca2cW1HLvtePn4l4Mrpq7yrF65FXGu7Hn/95o2UG+03hTc7b+Xcenk7//anO/PvEu4W39O8V3rf8H7lH7Z/7G13az/8IOBBy8PYh3ceCR49fyx//Llj0RPak9KnJk+rO507m7qCui49m/is47n0+afuoj+1/tz4wubFr3/5/dXSM6Gn46XsZd+rZa/1X+964/KmuTeq9/7b3Lef3hW/139f9YH94czHxI9PP03/TPpc9sX2S+PXsK93+3L7+qR8Gb//VwADyqNNOgCvdgFASwKAAc+N1Imq82F/QVRn2n4E/hNWnSH7ixsAtfCfProb/t3cAGDfDgCsoD49BYAoGgBxHgAdO3aoDp7l+s+dykKEZ4OtEV/SctPAvymqM+l3fg9vgVLVBQxv/wVxuILvJuoY/AAAAIplWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAHigAgAEAAAAAQAAAhagAwAEAAAAAQAAAMQAAAAAQVNDSUkAAABTY3JlZW5zaG90odHDIgAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAdZpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTk2PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzNDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrOJDOOAAAAHGlET1QAAAACAAAAAAAAAGIAAAAoAAAAYgAAAGIAAB1zO9OxSQAAHT9JREFUeAHsnQncDdUbx582tEi0KCrRiooiKtGCImmxVOrTp9KiBSkVEsnSSmkhlKVUCMmS9oWIFG0qkiipaN+1zv/5nf5nmrnvnblz33fue+997+98Pq87c+Y5Z858Z8x55pznPM9mjiZhIgESIAESIAESIIEYCGxGxSIGiqyCBEiABEiABEjAEKBiwQeBBEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIIECJPDnn3/KgAED5IADDpBzzjmnTBLYsGGD9OzZUy699FJp0qRJia/x66+/NswGDx4sO+ywQ4nrYwUkUFYJULEoq3eW10UCIQTOPfdcefjhh+XZZ5+V5s2bh0jm76G//vpLjj/+eFm8eLHMmzdPDjvssBJdzO233y69evWSzz//XHbdddcS1cXCJFCWCVCxKMt3l9dGAkkIDB8+XK688krp16+fDBw4MIlE2cn68ssvpX79+uaCoGDstddexb64Aw88UHbeeWd56aWXil0HC5JAIRCgYlEId5nXSAL/J/D8889Lq1at5MgjjzQd5BZbbBHI5qeffpIPP/xQGjRoECiTqQNxnvvFF1+UFi1aSJ06deTNN9+UrbbaKu1mL126VBo2bCj333+/XHjhhWmXZwESKCQCVCwK6W7zWguawD///CP77LOPrFmzRl555RU56qijAnmsWLHCTJFg2P+9994znXKgcMwHMnHu1q1by9NPPy2jRo2SLl26pN3iK664QkaPHi0YAaF9Rdr4WKDACFCxKLAbzsstXAIzZ86 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
These images render very big for me, much bigger than they should be
{ | ||
"attachments": { | ||
"8cf4f6f1-b501-4ff8-970c-a1645c8009ce.png": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAADECAYAAADDLmjeAAAMTGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIQQIREBK6E0QkRJASggtgPQiiEpIAoQSY0JQsaOLCq5dRLCiqyAuuroCstiwK4ti74sFBWVdLNiVNyGALvvK9+b75s5//znzzzln5pYBgN7Ol0pzUE0AciV5sphgf9aEpGQWqRNQARkAYAi0+AK5lBMVFQ7vwGD79/L2OkCU7RUHpdY/+/9r0RKK5AIAkCiI04RyQS7EvwKANwmksjwAiFLIm0/PkyrxWoh1ZNBBiKuUOEOFm5Q4TYUv9dvExXAhfgwAWZ3Pl2UAoNEDeVa+IAPq0GG0wEkiFEsg9oPYJzd3qhDi+RDbQBs4J12pz077Tifjb5ppQ5p8fsYQVsXSX8gBYrk0hz/z/0zH/y65OYrBOaxhVc+UhcQoY4Z5e5w9NUyJ1SF+L0mLiIRYGwAUFwv77ZWYmakIiVfZozYCORfmDDAhHifPieUN8DFCfkAYUK4+QNMlORHhAzaF6eIgpQ3MH1omzuPFQawHcZVIHhg7YHNMNjVmcN7r6TIuZ4Dv5Mv6fVDqf1Vkx3NU+ph2pog3oI85FmTGJUJMhTggX5wQAbEGxBHy7NiwAZuUgkxuxKCNTBGjjMUCYplIEuyv0sdK02VBMQP2u3Plg7FjxzLFvIgBfDkvMy5ElSvssYDf7z+MBesRSTjxgzoi+YTwwViEooBAVew4WSSJj1XxuJ40zz9GNRa3k+ZEDdjj/qKcYCVvBnGcPD92cGx+HtycKn28SJoXFafyEy/P4odGqfzB94FwwAUBgAUUsKaBqSALiFu767vhnaonCPCBDGQAEXAYYAZHJPb3SOA1FhSAPyESAfnQOP/+XhHIh/yXYaySEw9xqqsDSB/oU6pkgycQ54IwkAPvFf1KkiEPEsBjyIj/4REfVgGMIQdWZf+/5wfZbwwHMuEDjGJwRhZ90JIYSAwghhCDiLa4Ae6De+Hh8OoHqzPOxj0G4/hmT3hCaCM8JFwjtBNuTREXyoZ5OR60Q/2ggfykfZ8f3ApquuL+uDdUh8o4EzcADrgLnIeD+8KZXSHLHfBbmRXWMO2/RfDdCg3YUZwoKGUExY9iM3ykhp2G65CKMtff50fla9pQvrlDPcPn536XfSFsw4ZbYkuwA9gZ7Dh2DmvC6gELO4o1YC3YYSUe2nGP+3fc4Gwx/f5kQ53he+bbyiozKXeqcepy+qzqyxPNyFM+jNyp0pkycUZmHosDvxgiFk8icBzFcnZydgFA+f1Rvd5eR/d/VxBmyzdu4R8AeB/t6+v77RsXehSAX9zhK+HQN86GDT8tagCcPSRQyPJVHK68EOCbgw6fPn1gDMyBDYzHGbgBL+AHAkEoiARxIAlMht5nwn0uA9PBbLAAFIESsBKsA+VgC9gOqsDPYD+oB03gODgNLoBL4Bq4A3dPB3gOesBb8AlBEBJCQxiIPmKCWCL2iDPCRnyQQCQciUGSkFQkA5EgCmQ2shApQVYj5cg2pBr5BTmEHEfOIW3ILeQB0oW8Qj6iGKqO6qBGqBU6GmWjHDQMjUMnoRnoNLQAXYQuR8vQSnQPWoceRy+g19B29DnaiwFMDWNippgDxsa4WCSWjKVjMmwuVoyVYpVYLdYI1/kK1o51Yx9wIs7AWbgD3MEheDwuwKfhc/FleDlehdfhJ/Er+AO8B/9KoBEMCfYETwKPMIGQQZhOKCKUEnYSDhJOwWepg/CWSCQyidZEd/gsJhGziLOIy4ibiHuJx4htxEfEXhKJpE+yJ3mTIkl8Uh6piLSBtId0lHSZ1EF6T1Yjm5CdyUHkZLKEXEguJe8mHyFfJj8lf6JoUiwpnpRIipAyk7KCsoPSSLlI6aB8ompRrane1DhqFnUBtYxaSz1FvUt9raamZqbmoRatJlabr1amtk/trNoDtQ/q2up26lz1FHWF+nL1XerH1G+pv6bRaFY0P1oyLY+2nFZNO0G7T3uvwdBw1OBpCDXmaVRo1Glc1nhBp9At6Rz6ZHoBvZR+gH6R3q1J0bTS5GryNedqVmge0ryh2avF0BqjFamVq7VMa7fWOa1ObZK2lXagtlB7kfZ27RPajxgYw5zBZQgYCxk7GKcYHTpEHWsdnk6WTonOzzqtOj262rouugm6M3QrdA/rtjMxphWTx8xhrmDuZ15nfhxhNIIzQjRi6YjaEZdHvNMbqeenJ9Ir1turd03voz5LP1A/W3+Vfr3+PQPcwM4g2mC6wWaDUwbdI3VGeo0UjCweuX/kbUPU0M4wxnCW4XbDFsNeI2OjYCOp0QajE0bdxkxjP+Ms47XGR4y7TBgmPiZik7UmR02esXRZHFYOq4x1ktVjamgaYqow3WbaavrJzNos3qzQbK/ZPXOqOds83XytebN5j4WJxXiL2RY1FrctKZZsy0zL9ZZnLN9ZWVslWi22qrfqtNaz5lkXWNdY37Wh2fjaTLOptLlqS7Rl22bbbrK9ZIfaudpl2lXYXbRH7d3sxfab7NtGEUZ5jJKMqhx1w0HdgeOQ71Dj8MCR6RjuWOhY7/hitMXo5NGrRp8Z/dXJ1SnHaYfTnTHaY0LHFI5pHPPK2c5Z4FzhfHUsbWzQ2HljG8a+dLF3EblsdrnpynAd77rYtdn1i5u7m8yt1q3L3cI91X2j+w22DjuKvYx91oPg4e8xz6PJ44Onm2ee537Pv7wcvLK9dnt1jrMeJxq3Y9wjbzNvvvc273Yflk+qz1afdl9TX75vpe9DP3M/od9Ov6ccW04WZw/nhb+Tv8z/oP87rid3DvdYABYQHFAc0BqoHRgfWB54P8gsKCOoJqgn2DV4VvCxEEJIWMiqkBs8I56AV83rCXUPnRN6Mkw9LDasPOxhuF24LLxxPDo+dPya8XcjLCMkEfWRIJIXuSbyXpR11LSo36KJ0VHRFdFPYsbEzI45E8uInRK7O/ZtnH/cirg78TbxivjmBHpCSkJ1wrvEgMTVie0TRk+YM+FCkkGSOKkhmZSckLwzuXdi4MR1EztSXFOKUq5Psp40Y9K5yQaTcyYfnkKfwp9yIJWQmpi6O/UzP5Jfye9N46VtTOsRcAXrBc+FfsK1wi6Rt2i16Gm6d/rq9M4M74w1GV2Zvpmlmd1irrhc/DIrJGtL1rvsyOxd2X05iTl7c8m5qbmHJNqSbMnJqcZTZ0xtk9pLi6Tt0zynrZvWIwuT7ZQj8knyhjwd+KPforBR/KB4kO+TX5H/fnrC9AMztGZIZrTMtJu5dObTgqCCn2bhswSzmmebzl4w+8Eczpxtc5G5aXOb55nPWzSvY37w/KoF1AXZC34vdCpcXfhmYeLCxkVGi+YvevRD8A81RRpFsqIbi70Wb1mCLxEvaV06dumGpV+LhcXnS5xKSks+LxMsO//jmB/Lfuxbnr68dYXbis0riSslK6+v8l1VtVprdcHqR2vGr6lby1pbvPbNuinrzpW6lG5ZT12vWN9eFl7WsMFiw8oNn8szy69V+Ffs3Wi4cenGd5uEmy5v9ttcu8VoS8mWj1vFW29uC95WV2lVWbqduD1/+5MdCTvO/MT+qXqnwc6SnV92SXa1V8VUnax2r67ebbh7RQ1ao6jp2pOy59LPAT831DrUbtvL3FuyD+xT7Hv2S+ov1/eH7W8+wD5Q+6vlrxsPMg4W1yF1M+t66jPr2xuSGtoOhR5qbvRqPPib42+7mkybKg7rHl5xhHpk0ZG+owVHe49Jj3Ufzzj+qHlK850TE05cPRl9svVU2Kmzp4NOnzjDOXP0rPfZpnOe5w6dZ5+vv+B2oa7FteXg766/H2x1a6276H6x4ZLHpca2cW1HLvtePn4l4Mrpq7yrF65FXGu7Hn/95o2UG+03hTc7b+Xcenk7//anO/PvEu4W39O8V3rf8H7lH7Z/7G13az/8IOBBy8PYh3ceCR49fyx//Llj0RPak9KnJk+rO507m7qCui49m/is47n0+afuoj+1/tz4wubFr3/5/dXSM6Gn46XsZd+rZa/1X+964/KmuTeq9/7b3Lef3hW/139f9YH94czHxI9PP03/TPpc9sX2S+PXsK93+3L7+qR8Gb//VwADyqNNOgCvdgFASwKAAc+N1Imq82F/QVRn2n4E/hNWnSH7ixsAtfCfProb/t3cAGDfDgCsoD49BYAoGgBxHgAdO3aoDp7l+s+dykKEZ4OtEV/SctPAvymqM+l3fg9vgVLVBQxv/wVxuILvJuoY/AAAAIplWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAHigAgAEAAAAAQAAAhagAwAEAAAAAQAAAMQAAAAAQVNDSUkAAABTY3JlZW5zaG90odHDIgAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAdZpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTk2PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzNDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrOJDOOAAAAHGlET1QAAAACAAAAAAAAAGIAAAAoAAAAYgAAAGIAAB1zO9OxSQAAHT9JREFUeAHsnQncDdUbx582tEi0KCrRiooiKtGCImmxVOrTp9KiBSkVEsnSSmkhlKVUCMmS9oWIFG0qkiipaN+1zv/5nf5nmrnvnblz33fue+997+98Pq87c+Y5Z858Z8x55pznPM9mjiZhIgESIAESIAESIIEYCGxGxSIGiqyCBEiABEiABEjAEKBiwQeBBEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIIECJPDnn3/KgAED5IADDpBzzjmnTBLYsGGD9OzZUy699FJp0qRJia/x66+/NswGDx4sO+ywQ4nrYwUkUFYJULEoq3eW10UCIQTOPfdcefjhh+XZZ5+V5s2bh0jm76G//vpLjj/+eFm8eLHMmzdPDjvssBJdzO233y69evWSzz//XHbdddcS1cXCJFCWCVCxKMt3l9dGAkkIDB8+XK688krp16+fDBw4MIlE2cn68ssvpX79+uaCoGDstddexb64Aw88UHbeeWd56aWXil0HC5JAIRCgYlEId5nXSAL/J/D8889Lq1at5MgjjzQd5BZbbBHI5qeffpIPP/xQGjRoECiTqQNxnvvFF1+UFi1aSJ06deTNN9+UrbbaKu1mL126VBo2bCj333+/XHjhhWmXZwESKCQCVCwK6W7zWguawD///CP77LOPrFmzRl555RU56qijAnmsWLHCTJFg2P+9994znXKgcMwHMnHu1q1by9NPPy2jRo2SLl26pN3iK664QkaPHi0YAaF9Rdr4WKDACFCxKLAbzsstXAIzZ86 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The code will download ...
{ | ||
"attachments": { | ||
"8cf4f6f1-b501-4ff8-970c-a1645c8009ce.png": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAADECAYAAADDLmjeAAAMTGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIQQIREBK6E0QkRJASggtgPQiiEpIAoQSY0JQsaOLCq5dRLCiqyAuuroCstiwK4ti74sFBWVdLNiVNyGALvvK9+b75s5//znzzzln5pYBgN7Ol0pzUE0AciV5sphgf9aEpGQWqRNQARkAYAi0+AK5lBMVFQ7vwGD79/L2OkCU7RUHpdY/+/9r0RKK5AIAkCiI04RyQS7EvwKANwmksjwAiFLIm0/PkyrxWoh1ZNBBiKuUOEOFm5Q4TYUv9dvExXAhfgwAWZ3Pl2UAoNEDeVa+IAPq0GG0wEkiFEsg9oPYJzd3qhDi+RDbQBs4J12pz077Tifjb5ppQ5p8fsYQVsXSX8gBYrk0hz/z/0zH/y65OYrBOaxhVc+UhcQoY4Z5e5w9NUyJ1SF+L0mLiIRYGwAUFwv77ZWYmakIiVfZozYCORfmDDAhHifPieUN8DFCfkAYUK4+QNMlORHhAzaF6eIgpQ3MH1omzuPFQawHcZVIHhg7YHNMNjVmcN7r6TIuZ4Dv5Mv6fVDqf1Vkx3NU+ph2pog3oI85FmTGJUJMhTggX5wQAbEGxBHy7NiwAZuUgkxuxKCNTBGjjMUCYplIEuyv0sdK02VBMQP2u3Plg7FjxzLFvIgBfDkvMy5ElSvssYDf7z+MBesRSTjxgzoi+YTwwViEooBAVew4WSSJj1XxuJ40zz9GNRa3k+ZEDdjj/qKcYCVvBnGcPD92cGx+HtycKn28SJoXFafyEy/P4odGqfzB94FwwAUBgAUUsKaBqSALiFu767vhnaonCPCBDGQAEXAYYAZHJPb3SOA1FhSAPyESAfnQOP/+XhHIh/yXYaySEw9xqqsDSB/oU6pkgycQ54IwkAPvFf1KkiEPEsBjyIj/4REfVgGMIQdWZf+/5wfZbwwHMuEDjGJwRhZ90JIYSAwghhCDiLa4Ae6De+Hh8OoHqzPOxj0G4/hmT3hCaCM8JFwjtBNuTREXyoZ5OR60Q/2ggfykfZ8f3ApquuL+uDdUh8o4EzcADrgLnIeD+8KZXSHLHfBbmRXWMO2/RfDdCg3YUZwoKGUExY9iM3ykhp2G65CKMtff50fla9pQvrlDPcPn536XfSFsw4ZbYkuwA9gZ7Dh2DmvC6gELO4o1YC3YYSUe2nGP+3fc4Gwx/f5kQ53he+bbyiozKXeqcepy+qzqyxPNyFM+jNyp0pkycUZmHosDvxgiFk8icBzFcnZydgFA+f1Rvd5eR/d/VxBmyzdu4R8AeB/t6+v77RsXehSAX9zhK+HQN86GDT8tagCcPSRQyPJVHK68EOCbgw6fPn1gDMyBDYzHGbgBL+AHAkEoiARxIAlMht5nwn0uA9PBbLAAFIESsBKsA+VgC9gOqsDPYD+oB03gODgNLoBL4Bq4A3dPB3gOesBb8AlBEBJCQxiIPmKCWCL2iDPCRnyQQCQciUGSkFQkA5EgCmQ2shApQVYj5cg2pBr5BTmEHEfOIW3ILeQB0oW8Qj6iGKqO6qBGqBU6GmWjHDQMjUMnoRnoNLQAXYQuR8vQSnQPWoceRy+g19B29DnaiwFMDWNippgDxsa4WCSWjKVjMmwuVoyVYpVYLdYI1/kK1o51Yx9wIs7AWbgD3MEheDwuwKfhc/FleDlehdfhJ/Er+AO8B/9KoBEMCfYETwKPMIGQQZhOKCKUEnYSDhJOwWepg/CWSCQyidZEd/gsJhGziLOIy4ibiHuJx4htxEfEXhKJpE+yJ3mTIkl8Uh6piLSBtId0lHSZ1EF6T1Yjm5CdyUHkZLKEXEguJe8mHyFfJj8lf6JoUiwpnpRIipAyk7KCsoPSSLlI6aB8ompRrane1DhqFnUBtYxaSz1FvUt9raamZqbmoRatJlabr1amtk/trNoDtQ/q2up26lz1FHWF+nL1XerH1G+pv6bRaFY0P1oyLY+2nFZNO0G7T3uvwdBw1OBpCDXmaVRo1Glc1nhBp9At6Rz6ZHoBvZR+gH6R3q1J0bTS5GryNedqVmge0ryh2avF0BqjFamVq7VMa7fWOa1ObZK2lXagtlB7kfZ27RPajxgYw5zBZQgYCxk7GKcYHTpEHWsdnk6WTonOzzqtOj262rouugm6M3QrdA/rtjMxphWTx8xhrmDuZ15nfhxhNIIzQjRi6YjaEZdHvNMbqeenJ9Ir1turd03voz5LP1A/W3+Vfr3+PQPcwM4g2mC6wWaDUwbdI3VGeo0UjCweuX/kbUPU0M4wxnCW4XbDFsNeI2OjYCOp0QajE0bdxkxjP+Ms47XGR4y7TBgmPiZik7UmR02esXRZHFYOq4x1ktVjamgaYqow3WbaavrJzNos3qzQbK/ZPXOqOds83XytebN5j4WJxXiL2RY1FrctKZZsy0zL9ZZnLN9ZWVslWi22qrfqtNaz5lkXWNdY37Wh2fjaTLOptLlqS7Rl22bbbrK9ZIfaudpl2lXYXbRH7d3sxfab7NtGEUZ5jJKMqhx1w0HdgeOQ71Dj8MCR6RjuWOhY7/hitMXo5NGrRp8Z/dXJ1SnHaYfTnTHaY0LHFI5pHPPK2c5Z4FzhfHUsbWzQ2HljG8a+dLF3EblsdrnpynAd77rYtdn1i5u7m8yt1q3L3cI91X2j+w22DjuKvYx91oPg4e8xz6PJ44Onm2ee537Pv7wcvLK9dnt1jrMeJxq3Y9wjbzNvvvc273Yflk+qz1afdl9TX75vpe9DP3M/od9Ov6ccW04WZw/nhb+Tv8z/oP87rid3DvdYABYQHFAc0BqoHRgfWB54P8gsKCOoJqgn2DV4VvCxEEJIWMiqkBs8I56AV83rCXUPnRN6Mkw9LDasPOxhuF24LLxxPDo+dPya8XcjLCMkEfWRIJIXuSbyXpR11LSo36KJ0VHRFdFPYsbEzI45E8uInRK7O/ZtnH/cirg78TbxivjmBHpCSkJ1wrvEgMTVie0TRk+YM+FCkkGSOKkhmZSckLwzuXdi4MR1EztSXFOKUq5Psp40Y9K5yQaTcyYfnkKfwp9yIJWQmpi6O/UzP5Jfye9N46VtTOsRcAXrBc+FfsK1wi6Rt2i16Gm6d/rq9M4M74w1GV2Zvpmlmd1irrhc/DIrJGtL1rvsyOxd2X05iTl7c8m5qbmHJNqSbMnJqcZTZ0xtk9pLi6Tt0zynrZvWIwuT7ZQj8knyhjwd+KPforBR/KB4kO+TX5H/fnrC9AMztGZIZrTMtJu5dObTgqCCn2bhswSzmmebzl4w+8Eczpxtc5G5aXOb55nPWzSvY37w/KoF1AXZC34vdCpcXfhmYeLCxkVGi+YvevRD8A81RRpFsqIbi70Wb1mCLxEvaV06dumGpV+LhcXnS5xKSks+LxMsO//jmB/Lfuxbnr68dYXbis0riSslK6+v8l1VtVprdcHqR2vGr6lby1pbvPbNuinrzpW6lG5ZT12vWN9eFl7WsMFiw8oNn8szy69V+Ffs3Wi4cenGd5uEmy5v9ttcu8VoS8mWj1vFW29uC95WV2lVWbqduD1/+5MdCTvO/MT+qXqnwc6SnV92SXa1V8VUnax2r67ebbh7RQ1ao6jp2pOy59LPAT831DrUbtvL3FuyD+xT7Hv2S+ov1/eH7W8+wD5Q+6vlrxsPMg4W1yF1M+t66jPr2xuSGtoOhR5qbvRqPPib42+7mkybKg7rHl5xhHpk0ZG+owVHe49Jj3Ufzzj+qHlK850TE05cPRl9svVU2Kmzp4NOnzjDOXP0rPfZpnOe5w6dZ5+vv+B2oa7FteXg766/H2x1a6276H6x4ZLHpca2cW1HLvtePn4l4Mrpq7yrF65FXGu7Hn/95o2UG+03hTc7b+Xcenk7//anO/PvEu4W39O8V3rf8H7lH7Z/7G13az/8IOBBy8PYh3ceCR49fyx//Llj0RPak9KnJk+rO507m7qCui49m/is47n0+afuoj+1/tz4wubFr3/5/dXSM6Gn46XsZd+rZa/1X+964/KmuTeq9/7b3Lef3hW/139f9YH94czHxI9PP03/TPpc9sX2S+PXsK93+3L7+qR8Gb//VwADyqNNOgCvdgFASwKAAc+N1Imq82F/QVRn2n4E/hNWnSH7ixsAtfCfProb/t3cAGDfDgCsoD49BYAoGgBxHgAdO3aoDp7l+s+dykKEZ4OtEV/SctPAvymqM+l3fg9vgVLVBQxv/wVxuILvJuoY/AAAAIplWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAHigAgAEAAAAAQAAAhagAwAEAAAAAQAAAMQAAAAAQVNDSUkAAABTY3JlZW5zaG90odHDIgAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAdZpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTk2PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzNDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrOJDOOAAAAHGlET1QAAAACAAAAAAAAAGIAAAAoAAAAYgAAAGIAAB1zO9OxSQAAHT9JREFUeAHsnQncDdUbx582tEi0KCrRiooiKtGCImmxVOrTp9KiBSkVEsnSSmkhlKVUCMmS9oWIFG0qkiipaN+1zv/5nf5nmrnvnblz33fue+997+98Pq87c+Y5Z858Z8x55pznPM9mjiZhIgESIAESIAESIIEYCGxGxSIGiqyCBEiABEiABEjAEKBiwQeBBEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIIECJPDnn3/KgAED5IADDpBzzjmnTBLYsGGD9OzZUy699FJp0qRJia/x66+/NswGDx4sO+ywQ4nrYwUkUFYJULEoq3eW10UCIQTOPfdcefjhh+XZZ5+V5s2bh0jm76G//vpLjj/+eFm8eLHMmzdPDjvssBJdzO233y69evWSzz//XHbdddcS1cXCJFCWCVCxKMt3l9dGAkkIDB8+XK688krp16+fDBw4MIlE2cn68ssvpX79+uaCoGDstddexb64Aw88UHbeeWd56aWXil0HC5JAIRCgYlEId5nXSAL/J/D8889Lq1at5MgjjzQd5BZbbBHI5qeffpIPP/xQGjRoECiTqQNxnvvFF1+UFi1aSJ06deTNN9+UrbbaKu1mL126VBo2bCj333+/XHjhhWmXZwESKCQCVCwK6W7zWguawD///CP77LOPrFmzRl555RU56qijAnmsWLHCTJFg2P+9994znXKgcMwHMnHu1q1by9NPPy2jRo2SLl26pN3iK664QkaPHi0YAaF9Rdr4WKDACFCxKLAbzsstXAIzZ86 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
we dont have any way to monitor the downloading progress, do we?
Add pre-executed notebook with "Alerce" data.
Rendered doc: https://lsdb--479.org.readthedocs.build/en/479/tutorials/pre_executed/ztf-alerts-sne.html