GASOM: Genetic Algorithm assisted Architecture Learning in Self Organizing Maps
Paper can be found here : paper link
If using this, cite this as :
Saboo A., Sharma A., Dash T. (2017) GASOM: Genetic Algorithm Assisted Architecture Learning in Self Organizing Maps. In: Liu D., Xie S., Li Y., Zhao D., El-Alfy ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, vol 10634. Springer, Cham
- Pyevolve==0.6rc1
- matplotlib==2.0.0
- numpy==1.12.1
- pandas==0.18.1
- pip install -r requirements.txt
- Edit the params : datasetpath, number_of_columns_csv, features, dataset_name, type_of_problem, data (Change data numpy array, so that, data contains only the relevant features, without the tags and indices)
- python train.py > dataset.log (This gives the best possible SOM Map Size for your dataset)
- Results will be present in dataset_name folder in cwd, along with final stats in dataset.log file.
- python generate_error_plot.py <dataset_name> (Error plot is generated)
- Visualise the results
-
Real World Data sets used-:
- Wine
- Iris
- Abalone
- Car Evaluation
- Glass Identification
- Sonar
-
Synthetic Data sets used-:
- Corner
- CrescentFullMoon
- Ginger Breadman
- Half Kernal
- Outliers
- Two Spirals