Skip to content

Commit

Permalink
FEAT: Adding SGD, Adam, and RMSProp optimizers
Browse files Browse the repository at this point in the history
- Moved zeroGrad to be part of Optimizer class
- Renamed perceptron.cpp to xor.cpp
- Modified xor example to run with SGD, Adam, or RMSProp optimizers
  • Loading branch information
pavanky committed Aug 9, 2017
1 parent 52546fa commit 1456819
Show file tree
Hide file tree
Showing 8 changed files with 346 additions and 25 deletions.
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ target_sources(afml
src/nn/Modules/Module.cpp
src/nn/Modules/Dropout.cpp
src/nn/Init.cpp
src/optim/Optimizers.cpp
)

target_include_directories(afml
Expand Down
2 changes: 1 addition & 1 deletion examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,6 @@ endfunction(build_example)
# build_example(Activations.cpp)
# build_example(FFNet.cpp)
# build_example(Node.cpp)
build_example(perceptron.cpp)
build_example(xor.cpp)
# build_example(Weights.cpp)
build_example(autograd.cpp)
50 changes: 35 additions & 15 deletions examples/perceptron.cpp → examples/xor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -9,16 +9,29 @@

#include <af/autograd.h>
#include <af/nn.h>
#include <af/optim.h>

#include <string>
#include <memory>

using namespace af;
using namespace af::nn;
using namespace af::autograd;

int main()
int main(int argc, const char **args)
{
int optim_mode = 0;
std::string optimizer_arg = std::string(args[1]);
if (optimizer_arg == "--adam") {
optim_mode = 1;
} else if (optimizer_arg == "--rmsprop") {
optim_mode = 2;
}

const int inputSize = 2;
const int outputSize = 1;
const double lr = 0.1;
const double lr = 0.01;
const double mu = 0.1;
const int numSamples = 4;

float hInput[] = {1, 1,
Expand All @@ -34,24 +47,35 @@ int main()
auto in = af::array(inputSize, numSamples, hInput);
auto out = af::array(outputSize, numSamples, hOutput);

nn::Sequential perceptron;
nn::Sequential model;

perceptron.add(nn::Linear(inputSize, outputSize));
perceptron.add(nn::Sigmoid());
model.add(nn::Linear(inputSize, outputSize));
model.add(nn::Sigmoid());

auto loss = nn::MeanSquaredError();

std::unique_ptr<optim::Optimizer> optim;

if (optimizer_arg == "--rmsprop") {
optim = std::unique_ptr<optim::Optimizer>(new optim::RMSPropOptimizer(model.parameters(), lr));
} else if (optimizer_arg == "--adam") {
optim = std::unique_ptr<optim::Optimizer>(new optim::AdamOptimizer(model.parameters(), lr));
} else {
optim = std::unique_ptr<optim::Optimizer>(new optim::SGDOptimizer(model.parameters(), lr, mu));
}

Variable result, l;
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < numSamples; j++) {
perceptron.train();
perceptron.zeroGrad();

model.train();
optim->zeroGrad();

af::array in_j = in(af::span, j);
af::array out_j = out(af::span, j);

// Forward propagation
result = perceptron(nn::input(in_j));
result = model(nn::input(in_j));

// Calculate loss
l = loss(result, nn::noGrad(out_j));
Expand All @@ -60,18 +84,14 @@ int main()
l.backward();

// Update parameters
// TODO: Should use optimizer
for (auto &param : perceptron.parameters()) {
param.array() -= lr * param.grad().array();
param.array().eval();
}
optim->update();
}

if ((i + 1) % 100 == 0) {
perceptron.eval();
model.eval();

// Forward propagation
result = perceptron(nn::input(in));
result = model(nn::input(in));

// Calculate loss
// TODO: Use loss function
Expand Down
2 changes: 0 additions & 2 deletions include/af/nn/Modules/Module.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,6 @@ namespace af

std::vector<autograd::Variable> parameters();

void zeroGrad();

void train();

void eval();
Expand Down
9 changes: 9 additions & 0 deletions include/af/optim.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
/*******************************************************
* Copyright (c) 2017, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <af/optim/Optimizers.hpp>
90 changes: 90 additions & 0 deletions include/af/optim/Optimizers.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
/*******************************************************
* Copyright (c) 2017, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/

#pragma once

#include <af/autograd/Variable.hpp>
#include <arrayfire.h>

#include <vector>

namespace af
{
namespace optim
{

class Optimizer
{
protected:
std::vector<autograd::Variable> m_parameters;
public:

Optimizer(const std::vector<autograd::Variable> &parameters);

virtual void update() = 0;

void zeroGrad();
};

class SGDOptimizer : public Optimizer
{
bool m_use_nesterov;
double m_lr;
double m_mu;
double m_wd;
std::vector<af::array> m_velocities;
public:
SGDOptimizer(const std::vector<autograd::Variable> &parameters,
double learning_rate, double momentum = 0,
double weight_decay = 0,
bool use_nesterov = false);
void update();
};

class AdamOptimizer : public Optimizer
{
double m_lr;
double m_beta1;
double m_beta2;
double m_eps;
double m_wd;
int m_count;
std::vector<af::array> m_biased_first;
std::vector<af::array> m_biased_second;
public:
AdamOptimizer(const std::vector<autograd::Variable> &parameters,
double learning_rate,
double beta1 = 0.9,
double beta2 = 0.999,
double epsilon = 1E-8,
double weight_decay = 0);
void update();
};

class RMSPropOptimizer : public Optimizer
{
bool m_use_first;
double m_lr;
double m_rho;
double m_eps;
double m_wd;
std::vector<af::array> m_first;
std::vector<af::array> m_second;
public:
RMSPropOptimizer(const std::vector<autograd::Variable> &parameters,
double learning_rate,
double rho = 0.99,
double epsilon = 1E-8,
double weight_decay = 0,
bool use_first = false);
void update();
};

}
}
7 changes: 0 additions & 7 deletions src/nn/Modules/Module.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -54,13 +54,6 @@ namespace af
return m_parameters;
}

void Module::zeroGrad()
{
for (auto &parameter : m_parameters) {
parameter.zeroGrad();
}
}

Variable Module::operator()(const Variable &input)
{
return this->forward(input);
Expand Down
Loading

0 comments on commit 1456819

Please sign in to comment.