-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #48 from arcee-ai/chore/organize-exps
move exp into folder
- Loading branch information
Showing
6 changed files
with
93 additions
and
89 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,91 +1,4 @@ | ||
# Testing e2e retriever hit rate | ||
# Research experiments | ||
|
||
This contains experiment results from dalm training on different datasets | ||
|
||
Inspired by [llama-index](https://gpt-index.readthedocs.io/en/latest/examples/finetuning/embeddings/finetune_embedding_adapter.html) | ||
|
||
# Setup | ||
|
||
```shell | ||
pip install indomain | ||
pip install -r requirements.txt | ||
python data_gen.py | ||
mkdir qa-outputs | ||
``` | ||
|
||
## Create the datasets | ||
First, create the train dataset | ||
```shell | ||
dalm qa-gen train_data.csv --output-dir qa-outputs --passage-column-name text --title-column-name title --sample-size 1000000 | ||
``` | ||
This creates a train and test file (because we typically want to split), so merge those into 1 | ||
```shell | ||
head -n 1 qa-outputs/question_answer_pairs_train.csv > question_answer_pairs.csv && tail -n+2 -q qa-outputs/*.csv >> question_answer_pairs.csv | ||
rm qa-outputs/*.csv | ||
mv question_answer_pairs.csv qa-outputs | ||
``` | ||
|
||
Same for the validation data | ||
```shell | ||
dalm qa-gen val_data.csv --output-dir qa-outputs-test --passage-column-name text --title-column-name title --sample-size 100000 | ||
head -n 1 qa-outputs-test/question_answer_pairs_train.csv > question_answer_pairs_test.csv && tail -n+2 -q qa-outputs-test/*.csv >> question_answer_pairs_test.csv | ||
rm -rf qa-outputs-test | ||
mv question_answer_pairs_test.csv qa-outputs | ||
``` | ||
|
||
Now we have 2 files for training and eval | ||
```shell | ||
(.venv) root@f4ec1ae23983:# ls -lash qa-outputs/ | ||
total 2.3M | ||
1.4M -rw-r--r-- 1 root root 1.4M Sep 20 20:02 question_answer_pairs.csv | ||
956K -rw-r--r-- 1 root root 953K Sep 20 20:14 question_answer_pairs_test.csv | ||
``` | ||
|
||
## Rage2e training | ||
|
||
Then we train e2e | ||
```shell | ||
dalm train-rag-e2e \ | ||
"qa-outputs/question_answer_pairs.csv" \ | ||
"BAAI/bge-small-en" \ | ||
"meta-llama/Llama-2-7b-hf" \ | ||
--dataset-passage-col-name text \ | ||
--output-dir "rag_e2e_checkpoints_bgsmall" \ | ||
--no-with-tracking \ | ||
--per-device-train-batch-size 12 | ||
``` | ||
|
||
And eval | ||
``` | ||
python ../dalm/eval/eval_retriever_only.py --dataset_path qa-outputs/question_answer_pairs_test.csv --retriever_model_name_or_path "BAAI/bge-small-en" --passage_column_name text --query_column_name Question --retriever_peft_model_path rag_e2e_checkpoints_bgsmall/retriever --embed_dim 384 | ||
************* | ||
Retriever results: | ||
Recall: 0.8202054794520548 | ||
Hit Rate: 0.8202054794520548 | ||
************* | ||
``` | ||
|
||
|
||
|
||
## Retriever only training | ||
|
||
Train the retriever only | ||
``` | ||
dalm train-retriever-only "BAAI/bge-small-en" "qa-outputs/question_answer_pairs.csv" \ | ||
--output-dir "retriever_only_checkpoints_bgsmall" \ | ||
--use-peft \ | ||
--dataset-passage-col-name text \ | ||
--per-device-train-batch-size 150 | ||
``` | ||
|
||
and eval | ||
``` | ||
python ../dalm/eval/eval_retriever_only.py --dataset_path qa-outputs/question_answer_pairs_test.csv --retriever_model_name_or_path "BAAI/bge-small-en" --passage_column_name text --query_column_name Question --retriever_peft_model_path retriever_only_checkpoints_bgsmall/ --embed_dim 384 | ||
************* | ||
Retriever results: | ||
Recall: 0.8116438356164384 | ||
Precision: 0.08116438356164453 | ||
Hit Rate: 0.8116438356164384 | ||
************* | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# Testing e2e retriever hit rate | ||
|
||
|
||
Inspired by [llama-index](https://gpt-index.readthedocs.io/en/latest/examples/finetuning/embeddings/finetune_embedding_adapter.html) | ||
|
||
# Setup | ||
|
||
```shell | ||
pip install indomain | ||
pip install -r requirements.txt | ||
python data_gen.py | ||
mkdir qa-outputs | ||
``` | ||
|
||
## Create the datasets | ||
First, create the train dataset | ||
```shell | ||
dalm qa-gen train_data.csv --output-dir qa-outputs --passage-column-name text --title-column-name title --sample-size 1000000 | ||
``` | ||
This creates a train and test file (because we typically want to split), so merge those into 1 | ||
```shell | ||
head -n 1 qa-outputs/question_answer_pairs_train.csv > question_answer_pairs.csv && tail -n+2 -q qa-outputs/*.csv >> question_answer_pairs.csv | ||
rm qa-outputs/*.csv | ||
mv question_answer_pairs.csv qa-outputs | ||
``` | ||
|
||
Same for the validation data | ||
```shell | ||
dalm qa-gen val_data.csv --output-dir qa-outputs-test --passage-column-name text --title-column-name title --sample-size 100000 | ||
head -n 1 qa-outputs-test/question_answer_pairs_train.csv > question_answer_pairs_test.csv && tail -n+2 -q qa-outputs-test/*.csv >> question_answer_pairs_test.csv | ||
rm -rf qa-outputs-test | ||
mv question_answer_pairs_test.csv qa-outputs | ||
``` | ||
|
||
Now we have 2 files for training and eval | ||
```shell | ||
(.venv) root@f4ec1ae23983:# ls -lash qa-outputs/ | ||
total 2.3M | ||
1.4M -rw-r--r-- 1 root root 1.4M Sep 20 20:02 question_answer_pairs.csv | ||
956K -rw-r--r-- 1 root root 953K Sep 20 20:14 question_answer_pairs_test.csv | ||
``` | ||
|
||
## Rage2e training | ||
|
||
Then we train e2e | ||
```shell | ||
dalm train-rag-e2e \ | ||
"qa-outputs/question_answer_pairs.csv" \ | ||
"BAAI/bge-small-en" \ | ||
"meta-llama/Llama-2-7b-hf" \ | ||
--dataset-passage-col-name text \ | ||
--output-dir "rag_e2e_checkpoints_bgsmall" \ | ||
--no-with-tracking \ | ||
--per-device-train-batch-size 12 | ||
``` | ||
|
||
And eval | ||
``` | ||
python ../../dalm/eval/eval_retriever_only.py --dataset_path qa-outputs/question_answer_pairs_test.csv --retriever_model_name_or_path "BAAI/bge-small-en" --passage_column_name text --query_column_name Question --retriever_peft_model_path rag_e2e_checkpoints_bgsmall/retriever --embed_dim 384 | ||
************* | ||
Retriever results: | ||
Recall: 0.8202054794520548 | ||
Hit Rate: 0.8202054794520548 | ||
************* | ||
``` | ||
|
||
|
||
|
||
## Retriever only training | ||
|
||
Train the retriever only | ||
``` | ||
dalm train-retriever-only "BAAI/bge-small-en" "qa-outputs/question_answer_pairs.csv" \ | ||
--output-dir "retriever_only_checkpoints_bgsmall" \ | ||
--use-peft \ | ||
--dataset-passage-col-name text \ | ||
--per-device-train-batch-size 150 | ||
``` | ||
|
||
and eval | ||
``` | ||
python ../../dalm/eval/eval_retriever_only.py --dataset_path qa-outputs/question_answer_pairs_test.csv --retriever_model_name_or_path "BAAI/bge-small-en" --passage_column_name text --query_column_name Question --retriever_peft_model_path retriever_only_checkpoints_bgsmall/ --embed_dim 384 | ||
************* | ||
Retriever results: | ||
Recall: 0.8116438356164384 | ||
Precision: 0.08116438356164453 | ||
Hit Rate: 0.8116438356164384 | ||
************* | ||
``` |
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.