Skip to content

arangodb/python-arango

Folders and files

NameName
Last commit message
Last commit date

Latest commit

4abec73 · Aug 1, 2023
Jul 11, 2023
Aug 1, 2023
Jul 11, 2023
Aug 1, 2023
May 19, 2023
Feb 1, 2023
Aug 1, 2023
May 19, 2023
Feb 16, 2021
Jan 9, 2023
Jun 8, 2023
Jun 17, 2022
Apr 1, 2022
Jun 2, 2023
Jul 11, 2023

Repository files navigation

Logo

Build CodeQL codecov PyPI version GitHub license Python version

Python-Arango

Python driver for ArangoDB, a scalable multi-model database natively supporting documents, graphs and search.

Requirements

  • ArangoDB version 3.9+
  • Python version 3.8+

Installation

pip install python-arango --upgrade

Getting Started

Here is a simple usage example:

from arango import ArangoClient

# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")

# Connect to "_system" database as root user.
sys_db = client.db("_system", username="root", password="passwd")

# Create a new database named "test".
sys_db.create_database("test")

# Connect to "test" database as root user.
db = client.db("test", username="root", password="passwd")

# Create a new collection named "students".
students = db.create_collection("students")

# Add a hash index to the collection.
students.add_hash_index(fields=["name"], unique=True)

# Insert new documents into the collection.
students.insert({"name": "jane", "age": 39})
students.insert({"name": "josh", "age": 18})
students.insert({"name": "judy", "age": 21})

# Execute an AQL query and iterate through the result cursor.
cursor = db.aql.execute("FOR doc IN students RETURN doc")
student_names = [document["name"] for document in cursor]

Another example with graphs:

from arango import ArangoClient

# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")

# Connect to "test" database as root user.
db = client.db("test", username="root", password="passwd")

# Create a new graph named "school".
graph = db.create_graph("school")

# Create a new EnterpriseGraph [Enterprise Edition]
eegraph = db.create_graph(
    name="school",
    smart=True)

# Create vertex collections for the graph.
students = graph.create_vertex_collection("students")
lectures = graph.create_vertex_collection("lectures")

# Create an edge definition (relation) for the graph.
edges = graph.create_edge_definition(
    edge_collection="register",
    from_vertex_collections=["students"],
    to_vertex_collections=["lectures"]
)

# Insert vertex documents into "students" (from) vertex collection.
students.insert({"_key": "01", "full_name": "Anna Smith"})
students.insert({"_key": "02", "full_name": "Jake Clark"})
students.insert({"_key": "03", "full_name": "Lisa Jones"})

# Insert vertex documents into "lectures" (to) vertex collection.
lectures.insert({"_key": "MAT101", "title": "Calculus"})
lectures.insert({"_key": "STA101", "title": "Statistics"})
lectures.insert({"_key": "CSC101", "title": "Algorithms"})

# Insert edge documents into "register" edge collection.
edges.insert({"_from": "students/01", "_to": "lectures/MAT101"})
edges.insert({"_from": "students/01", "_to": "lectures/STA101"})
edges.insert({"_from": "students/01", "_to": "lectures/CSC101"})
edges.insert({"_from": "students/02", "_to": "lectures/MAT101"})
edges.insert({"_from": "students/02", "_to": "lectures/STA101"})
edges.insert({"_from": "students/03", "_to": "lectures/CSC101"})

# Traverse the graph in outbound direction, breadth-first.
result = graph.traverse(
    start_vertex="students/01",
    direction="outbound",
    strategy="breadthfirst"
)

Please see the documentation for more details.