The repo is for this competition.
Docs:
Environment (UNet): pytorch, numpy, tqdm.
Environment (DeepLabV3+): pytorch, numpy, tqdm, tensorboard, opencv-python.
Just following the command below.
setup see here
bash /project/train/src_repo/UNet/train.sh
bash /project/train/src_repo/UNet/inference.sh
bash /project/train/src_repo/DeepLab/train.sh
bash /project/train/src_repo/DeepLab/inference.sh
# you must change the path in train.sh and inference.sh
# you can refer to *.bat, or just change randomly it as you want
cd $THIS_REPO_DIR_NAME
bash ./UNet/train.sh [dataset-name]
bash ./UNet/inference.sh
# you must change the path in train.sh and inference.sh
# you can refer to *.bat, or just change randomly it as you want
cd $THIS_REPO_DIR_NAME
bash ./DeepLab/train.sh
python ./DeepLab/inference.py
cd %THIS_REPO_DIR_NAME%
UNet\train [dataset-name]
UNet\inference
The [dataset-name]
should be Kitti
or My
, default is My
.
cd %THIS_REPO_DIR_NAME%
DeepLab\train
DeepLab\inference
This url again if you need to refer.
cd /project/train/
rm -rf src_repo
git clone $THIS_REPO_GIT_OR_HTTP
mv $THIS_REPO_DIR_NAME src_repo
... # test or train the repo as you want
- go to
https://www.cvmart.net/dev/10488/modelDevelopment/train
- click
新建训练任务
- set
执行命令
tobash /project/train/src_repo/DeepLab/train.sh
- do not mark any tick in
预加载模型
- click
提交
- wait till your training is done
- copy the interface by using such as
mkdir -p /project/ev_sdk/src/
cp /project/train/src_repo/DeepLab/ji.py /project/ev_sdk/src/
- specify the model path in file
ji.py
- go to
https://www.cvmart.net/dev/10488/modelDevelopment/test
- click
发起模型测试
- click
请选择模型列表
, choose the file you trained in the step above
make sure the model path in ji.py is the same as it here - click
提交
- wait till your testing is done
WaterSegmentation
UNet
├─ docs/ <-- some documents
├─ model/ <-- model and loss classes
├─ utils/ <-- dataset reader, visualization, ...
├─ train.py <-- train function
├─ inference.py <-- inference function
├─ ji.py <-- inference interface
└─ *.sh / *.bat <-- quick access
DeepLab
├─ docs/ <-- some documents
├─ model/ <-- model and loss classes
├─ utils/ <-- dataset reader, visualization, ...
├─ train.py <-- train function
├─ inference.py <-- inference function
├─ ji.py <-- inference interface
└─ *.sh / *.bat <-- quick access
Refer to this.
def init() -> nn.Module:
def process_image(
handle: nn.Module, input_image: np.ndarray,
args: Any, **kwargs
) -> str
See Issues.