Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the benchmark dataset for testing the model selection #1181

Merged
merged 1 commit into from
Jun 15, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions examples/cnn_ms/data/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

import numpy as np
import os
import sys
import gzip
import codecs


def check_dataset_exist(dirpath):
if not os.path.exists(dirpath):
print(
'The MNIST dataset does not exist. Please download the mnist dataset using python data/download_mnist.py'
)
sys.exit(0)
return dirpath


def load_dataset():
train_x_path = '/tmp/train-images-idx3-ubyte.gz' # need to change to local disk
train_y_path = '/tmp/train-labels-idx1-ubyte.gz' # need to change to local disk
valid_x_path = '/tmp/t10k-images-idx3-ubyte.gz' # need to change to local disk
valid_y_path = '/tmp/t10k-labels-idx1-ubyte.gz' # need to change to local disk

train_x = read_image_file(check_dataset_exist(train_x_path)).astype(
np.float32)
train_y = read_label_file(check_dataset_exist(train_y_path)).astype(
np.float32)
valid_x = read_image_file(check_dataset_exist(valid_x_path)).astype(
np.float32)
valid_y = read_label_file(check_dataset_exist(valid_y_path)).astype(
np.float32)
return train_x, train_y, valid_x, valid_y


def read_label_file(path):
with gzip.open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2049
length = get_int(data[4:8])
parsed = np.frombuffer(data, dtype=np.uint8, offset=8).reshape((length))
return parsed


def get_int(b):
return int(codecs.encode(b, 'hex'), 16)


def read_image_file(path):
with gzip.open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2051
length = get_int(data[4:8])
num_rows = get_int(data[8:12])
num_cols = get_int(data[12:16])
parsed = np.frombuffer(data, dtype=np.uint8, offset=16).reshape(
(length, 1, num_rows, num_cols))
return parsed


def normalize(train_x, val_x):
train_x /= 255
val_x /= 255
return train_x, val_x


def load():
train_x, train_y, val_x, val_y = load_dataset()
train_x, val_x = normalize(train_x, val_x)
train_x = train_x.astype(np.float32)
val_x = val_x.astype(np.float32)
train_y = train_y.astype(np.int32)
val_y = val_y.astype(np.int32)
return train_x, train_y, val_x, val_y

Loading