Skip to content

Commit

Permalink
Merge pull request #1182 from dcslin/feature/alexnet
Browse files Browse the repository at this point in the history
  • Loading branch information
lzjpaul authored Jun 15, 2024
2 parents cd90fa1 + 44b1c9a commit dbb194b
Showing 1 changed file with 118 additions and 0 deletions.
118 changes: 118 additions & 0 deletions examples/cnn_ms/model/alexnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

from singa import layer
from singa import model


class AlexNet(model.Model):

def __init__(self, num_classes=10, num_channels=1):
super(AlexNet, self).__init__()
self.num_classes = num_classes
self.input_size = 224
self.dimension = 4
self.conv1 = layer.Conv2d(num_channels, 64, 11, stride=4, padding=2)
self.conv2 = layer.Conv2d(64, 192, 5, padding=2)
self.conv3 = layer.Conv2d(192, 384, 3, padding=1)
self.conv4 = layer.Conv2d(384, 256, 3, padding=1)
self.conv5 = layer.Conv2d(256, 256, 3, padding=1)
self.linear1 = layer.Linear(4096)
self.linear2 = layer.Linear(4096)
self.linear3 = layer.Linear(num_classes)
self.pooling1 = layer.MaxPool2d(2, 2, padding=0)
self.pooling2 = layer.MaxPool2d(2, 2, padding=0)
self.pooling3 = layer.MaxPool2d(2, 2, padding=0)
self.avg_pooling1 = layer.AvgPool2d(3, 2, padding=0)
self.relu1 = layer.ReLU()
self.relu2 = layer.ReLU()
self.relu3 = layer.ReLU()
self.relu4 = layer.ReLU()
self.relu5 = layer.ReLU()
self.relu6 = layer.ReLU()
self.relu7 = layer.ReLU()
self.flatten = layer.Flatten()
self.dropout1 = layer.Dropout()
self.dropout2 = layer.Dropout()
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()

def forward(self, x):
y = self.conv1(x)
y = self.relu1(y)
y = self.pooling1(y)
y = self.conv2(y)
y = self.relu2(y)
y = self.pooling2(y)
y = self.conv3(y)
y = self.relu3(y)
y = self.conv4(y)
y = self.relu4(y)
y = self.conv5(y)
y = self.relu5(y)
y = self.pooling3(y)
y = self.avg_pooling1(y)
y = self.flatten(y)
y = self.dropout1(y)
y = self.linear1(y)
y = self.relu6(y)
y = self.dropout2(y)
y = self.linear2(y)
y = self.relu7(y)
y = self.linear3(y)
return y

def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)

if dist_option == 'plain':
self.optimizer(loss)
elif dist_option == 'half':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)
return out, loss

def set_optimizer(self, optimizer):
self.optimizer = optimizer


def create_model(pretrained=False, **kwargs):
"""Constructs a AlexNet model.
Args:
pretrained (bool): If True, returns a pre-trained model.
Returns:
The created AlexNet model.
"""
model = AlexNet(**kwargs)

return model


__all__ = ['AlexNet', 'create_model']

0 comments on commit dbb194b

Please sign in to comment.