Skip to content

Commit

Permalink
Create the models folder for the healthcare model zoo
Browse files Browse the repository at this point in the history
  • Loading branch information
gzrp committed Nov 7, 2024
1 parent cf7f55c commit 6241ae2
Showing 1 changed file with 146 additions and 0 deletions.
146 changes: 146 additions & 0 deletions examples/healthcare/models/malaria_net.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from singa import layer
from singa import model
from singa import tensor
from singa import opt
from singa import device

import numpy as np

np_dtype = {"float16": np.float16, "float32": np.float32}

singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}

class CNN(model.Model):

def __init__(self, num_classes=10, num_channels=1):
super(CNN, self).__init__()
self.num_classes = num_classes
self.input_size = 128
self.dimension = 4
self.conv1 = layer.Conv2d(num_channels, 32, 3, padding=0, activation="RELU")
self.conv2 = layer.Conv2d(32, 64, 3, padding=0, activation="RELU")
self.conv3 = layer.Conv2d(64, 64, 3, padding=0, activation="RELU")
self.linear1 = layer.Linear(128)
self.linear2 = layer.Linear(num_classes)
self.pooling1 = layer.MaxPool2d(2, 2, padding=0)
self.pooling2 = layer.MaxPool2d(2, 2, padding=0)
self.pooling3 = layer.MaxPool2d(2, 2, padding=0)
self.relu = layer.ReLU()
self.flatten = layer.Flatten()
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()
self.sigmoid = layer

def forward(self, x):
y = self.conv1(x)
y = self.pooling1(y)
y = self.conv2(y)
y = self.pooling2(y)
y = self.conv3(y)
y = self.pooling3(y)
y = self.flatten(y)
y = self.linear1(y)
y = self.relu(y)
y = self.linear2(y)
return y

def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)

if dist_option == 'plain':
self.optimizer(loss)
elif dist_option == 'half':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)
return out, loss

def set_optimizer(self, optimizer):
self.optimizer = optimizer


class MLP(model.Model):

def __init__(self, perceptron_size=100, num_classes=10):
super(MLP, self).__init__()
self.num_classes = num_classes
self.dimension = 2

self.relu = layer.ReLU()
self.linear1 = layer.Linear(perceptron_size)
self.linear2 = layer.Linear(num_classes)
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()

def forward(self, inputs):
y = self.linear1(inputs)
y = self.relu(y)
y = self.linear2(y)
return y

def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)

if dist_option == 'plain':
self.optimizer(loss)
elif dist_option == 'half':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)
return out, loss

def set_optimizer(self, optimizer):
self.optimizer = optimizer


def create_model(model_option='cnn', **kwargs):
"""Constructs a CNN model.
Args:
pretrained (bool): If True, returns a pre-trained model.
Returns:
The created CNN model.
"""
model = CNN(**kwargs)
if model_option=='mlp':
model = MLP(**kwargs)

return model


__all__ = ['CNN', 'MLP', 'create_model']

0 comments on commit 6241ae2

Please sign in to comment.