-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1215 from zlheui/train_ms_model
- Loading branch information
Showing
1 changed file
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
from singa import singa_wrap as singa | ||
from singa import device | ||
from singa import tensor | ||
from singa import opt | ||
from singa import autograd | ||
from singa.opt import Optimizer | ||
from singa.opt import DecayScheduler | ||
from singa.opt import Constant | ||
import numpy as np | ||
import time | ||
import argparse | ||
from PIL import Image | ||
|
||
np_dtype = {"float16": np.float16, "float32": np.float32} | ||
|
||
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} | ||
|
||
### MSOptimizer | ||
class MSOptimizer(Optimizer): | ||
def __call__(self, loss): | ||
pn_p_g_list = self.call_with_returns(loss) | ||
self.step() | ||
return pn_p_g_list | ||
|
||
def call_with_returns(self, loss): | ||
# print ("call_with_returns loss.data: \n", loss.data) | ||
pn_p_g_list = [] | ||
for p, g in autograd.backward(loss): | ||
if p.name is None: | ||
p.name = id(p) | ||
self.apply(p.name, p, g) | ||
# print ("call with returns") | ||
# print ("p.name: \n", p.name) | ||
# print ("p.data: \n", p.data) | ||
# print ("g.data: \n", g.data) | ||
pn_p_g_list.append([p.name, p, g]) # need iterables | ||
return pn_p_g_list | ||
|
||
class MSSGD(MSOptimizer): | ||
"""Implements stochastic gradient descent (optionally with momentum). | ||
Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__. | ||
Args: | ||
lr(float): learning rate | ||
momentum(float, optional): momentum factor(default: 0) | ||
weight_decay(float, optional): weight decay(L2 penalty)(default: 0) | ||
dampening(float, optional): dampening for momentum(default: 0) | ||
nesterov(bool, optional): enables Nesterov momentum(default: False) | ||
Typical usage example: | ||
>> > from singa import opt | ||
>> > optimizer = opt.SGD(lr=0.1, momentum=0.9) | ||
>> > optimizer.update() | ||
__ http: // www.cs.toronto.edu / %7Ehinton / absps / momentum.pdf | ||
.. note:: | ||
The implementation of SGD with Momentum / Nesterov subtly differs from | ||
Sutskever et. al. and implementations in some other frameworks. | ||
Considering the specific case of Momentum, the update can be written as | ||
.. math:: | ||
v = \rho * v + g \\ | ||
p = p - lr * v | ||
where p, g, v and: math: `\rho` denote the parameters, gradient, | ||
velocity, and momentum respectively. | ||
This is in contrast to Sutskever et. al. and | ||
other frameworks which employ an update of the form | ||
.. math:: | ||
v = \rho * v + lr * g \\ | ||
p = p - v | ||
The Nesterov version is analogously modified. | ||
""" | ||
|
||
def __init__(self, | ||
lr=0.1, | ||
momentum=0, | ||
dampening=0, | ||
weight_decay=0, | ||
nesterov=False, | ||
dtype=tensor.float32): | ||
super(MSSGD, self).__init__(lr, dtype) | ||
|
||
# init momentum | ||
if type(momentum) == float or type(momentum) == int: | ||
if momentum < 0.0: | ||
raise ValueError("Invalid momentum value: {}".format(momentum)) | ||
self.momentum = Constant(momentum) | ||
elif isinstance(momentum, DecayScheduler): | ||
self.momentum = momentum | ||
momentum = momentum.init_value | ||
else: | ||
raise TypeError("Wrong momentum type") | ||
self.mom_value = self.momentum(self.step_counter).as_type(self.dtype) | ||
|
||
# init dampening | ||
if type(dampening) == float or type(dampening) == int: | ||
self.dampening = Constant(dampening) | ||
elif isinstance(dampening, DecayScheduler): | ||
self.dampening = dampening | ||
dampening = dampening.init_value | ||
else: | ||
raise TypeError("Wrong dampening type") | ||
self.dam_value = self.dampening(self.step_counter).as_type(self.dtype) | ||
|
||
# init weight_decay | ||
if type(weight_decay) == float or type(weight_decay) == int: | ||
if weight_decay < 0.0: | ||
raise ValueError( | ||
"Invalid weight_decay value: {}".format(weight_decay)) | ||
self.weight_decay = Constant(weight_decay) | ||
elif isinstance(weight_decay, DecayScheduler): | ||
self.weight_decay = weight_decay | ||
else: | ||
raise TypeError("Wrong weight_decay type") | ||
self.decay_value = self.weight_decay(self.step_counter).as_type( | ||
self.dtype) | ||
|
||
# init other params | ||
self.nesterov = nesterov | ||
self.moments = dict() | ||
|
||
# check value | ||
if nesterov and (momentum <= 0 or dampening != 0): | ||
raise ValueError( | ||
"Nesterov momentum requires a momentum and zero dampening") | ||
|
||
def apply(self, param_name, param_value, param_grad): | ||
"""Performs a single optimization step. | ||
Args: | ||
param_name(String): the name of the param | ||
param_value(Tensor): param values to be update in-place | ||
grad(Tensor): param gradients; the values may be updated | ||
in this function; cannot use it anymore | ||
""" | ||
assert param_value.shape == param_grad.shape, ("shape mismatch", | ||
param_value.shape, | ||
param_grad.shape) | ||
self.device_check(param_value, self.step_counter, self.lr_value, | ||
self.mom_value, self.dam_value, self.decay_value) | ||
|
||
# derive dtype from input | ||
assert param_value.dtype == self.dtype | ||
|
||
# TODO add branch operator | ||
# if self.decay_value != 0: | ||
if self.weight_decay.init_value != 0: | ||
singa.Axpy(self.decay_value.data, param_value.data, param_grad.data) | ||
|
||
if self.momentum.init_value != 0: | ||
if param_name not in self.moments: | ||
flag = param_value.device.graph_enabled() | ||
param_value.device.EnableGraph(False) | ||
self.moments[param_name] = tensor.zeros_like(param_value) | ||
param_value.device.EnableGraph(flag) | ||
|
||
buf = self.moments[param_name] | ||
buf *= self.mom_value | ||
alpha = 1.0 - self.dam_value | ||
singa.Axpy(alpha.data, param_grad.data, buf.data) | ||
|
||
if self.nesterov: | ||
singa.Axpy(self.mom_value.data, buf.data, param_grad.data) | ||
else: | ||
param_grad = buf | ||
|
||
minus_lr = 0.0 - self.lr_value | ||
singa.Axpy(minus_lr.data, param_grad.data, param_value.data) | ||
|
||
def step(self): | ||
# increment step counter, lr and moment | ||
super().step() | ||
mom_value = self.momentum(self.step_counter).as_type(self.dtype) | ||
dam_value = self.dampening(self.step_counter).as_type(self.dtype) | ||
decay_value = self.weight_decay(self.step_counter).as_type(self.dtype) | ||
self.mom_value.copy_from(mom_value) | ||
self.dam_value.copy_from(dam_value) | ||
self.decay_value.copy_from(decay_value) | ||
|
||
def get_states(self): | ||
states = super().get_states() | ||
if self.mom_value > 0: | ||
states[ | ||
'moments'] = self.moments # a dict for 1st order moments tensors | ||
return states | ||
|
||
def set_states(self, states): | ||
super().set_states(states) | ||
if 'moments' in states: | ||
self.moments = states['moments'] | ||
self.mom_value = self.momentum(self.step_counter) | ||
|
||
|
||
if __name__ == '__main__': | ||
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training | ||
parser = argparse.ArgumentParser( | ||
description='Training using the autograd and graph.') | ||
parser.add_argument( | ||
'model', | ||
choices=['cnn', 'resnet', 'xceptionnet', 'mlp', 'msmlp', 'alexnet'], | ||
default='cnn') | ||
parser.add_argument('data', | ||
choices=['mnist', 'cifar10', 'cifar100'], | ||
default='mnist') | ||
parser.add_argument('-p', | ||
choices=['float32', 'float16'], | ||
default='float32', | ||
dest='precision') | ||
parser.add_argument('-m', | ||
'--max-epoch', | ||
default=3, | ||
type=int, | ||
help='maximum epochs', | ||
dest='max_epoch') | ||
parser.add_argument('-b', | ||
'--batch-size', | ||
default=64, | ||
type=int, | ||
help='batch size', | ||
dest='batch_size') | ||
parser.add_argument('-l', | ||
'--learning-rate', | ||
default=0.005, | ||
type=float, | ||
help='initial learning rate', | ||
dest='lr') | ||
# Determine which gpu to use | ||
parser.add_argument('-i', | ||
'--device-id', | ||
default=0, | ||
type=int, | ||
help='which GPU to use', | ||
dest='device_id') | ||
parser.add_argument('-g', | ||
'--disable-graph', | ||
default='True', | ||
action='store_false', | ||
help='disable graph', | ||
dest='graph') | ||
parser.add_argument('-v', | ||
'--log-verbosity', | ||
default=0, | ||
type=int, | ||
help='logging verbosity', | ||
dest='verbosity') | ||
|
||
args = parser.parse_args() | ||
|
||
mssgd = MSSGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, dtype=singa_dtype[args.precision]) | ||
run(0, | ||
1, | ||
args.device_id, | ||
args.max_epoch, | ||
args.batch_size, | ||
args.model, | ||
args.data, | ||
mssgd, | ||
args.graph, | ||
args.verbosity, | ||
precision=args.precision) |