Skip to content

Make SUM and AVG Aggregate Type Coercion Explicit #7369

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 2 additions & 35 deletions datafusion/core/src/physical_plan/aggregates/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ use datafusion_execution::TaskContext;
use datafusion_expr::Accumulator;
use datafusion_physical_expr::{
equivalence::project_equivalence_properties,
expressions::{Avg, CastExpr, Column, Sum},
expressions::Column,
normalize_out_expr_with_columns_map, reverse_order_bys,
utils::{convert_to_expr, get_indices_of_matching_exprs},
AggregateExpr, LexOrdering, LexOrderingReq, OrderingEquivalenceProperties,
Expand Down Expand Up @@ -1010,40 +1010,7 @@ fn aggregate_expressions(
| AggregateMode::SinglePartitioned => Ok(aggr_expr
.iter()
.map(|agg| {
let pre_cast_type = if let Some(Sum {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We no longer need this custom logic, it is handled automatically by the optimizer

data_type,
pre_cast_to_sum_type,
..
}) = agg.as_any().downcast_ref::<Sum>()
{
if *pre_cast_to_sum_type {
Some(data_type.clone())
} else {
None
}
} else if let Some(Avg {
sum_data_type,
pre_cast_to_sum_type,
..
}) = agg.as_any().downcast_ref::<Avg>()
{
if *pre_cast_to_sum_type {
Some(sum_data_type.clone())
} else {
None
}
} else {
None
};
let mut result = agg
.expressions()
.into_iter()
.map(|expr| {
pre_cast_type.clone().map_or(expr.clone(), |cast_type| {
Arc::new(CastExpr::new(expr, cast_type, None))
})
})
.collect::<Vec<_>>();
let mut result = agg.expressions().clone();
// In partial mode, append ordering requirements to expressions' results.
// Ordering requirements are used by subsequent executors to satisfy the required
// ordering for `AggregateMode::FinalPartitioned`/`AggregateMode::Final` modes.
Expand Down
11 changes: 10 additions & 1 deletion datafusion/core/tests/fuzz_cases/window_fuzz.rs
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,8 @@ use datafusion_expr::{

use datafusion::prelude::{SessionConfig, SessionContext};
use datafusion_common::{Result, ScalarValue};
use datafusion_physical_expr::expressions::{col, lit};
use datafusion_expr::type_coercion::aggregates::coerce_types;
use datafusion_physical_expr::expressions::{cast, col, lit};
use datafusion_physical_expr::{PhysicalExpr, PhysicalSortExpr};
use test_utils::add_empty_batches;

Expand Down Expand Up @@ -261,6 +262,14 @@ fn get_random_function(
let rand_fn_idx = rng.gen_range(0..window_fn_map.len());
let fn_name = window_fn_map.keys().collect::<Vec<_>>()[rand_fn_idx];
let (window_fn, new_args) = window_fn_map.values().collect::<Vec<_>>()[rand_fn_idx];
if let WindowFunction::AggregateFunction(f) = window_fn {
let a = args[0].clone();
let dt = a.data_type(schema.as_ref()).unwrap();
let sig = f.signature();
let coerced = coerce_types(f, &[dt], &sig).unwrap();
args[0] = cast(a, schema, coerced[0].clone()).unwrap();
}

for new_arg in new_args {
args.push(new_arg.clone());
}
Expand Down
24 changes: 10 additions & 14 deletions datafusion/expr/src/aggregate_function.rs
Original file line number Diff line number Diff line change
Expand Up @@ -228,20 +228,16 @@ impl AggregateFunction {
// Note that this function *must* return the same type that the respective physical expression returns
// or the execution panics.

let coerced_data_types = crate::type_coercion::aggregates::coerce_types(
self,
input_expr_types,
&self.signature(),
)
// original errors are all related to wrong function signature
// aggregate them for better error message
.map_err(|_| {
DataFusionError::Plan(utils::generate_signature_error_msg(
&format!("{self}"),
self.signature(),
input_expr_types,
))
})?;
let coerced_data_types = coerce_types(self, input_expr_types, &self.signature())
// original errors are all related to wrong function signature
// aggregate them for better error message
.map_err(|_| {
DataFusionError::Plan(utils::generate_signature_error_msg(
&format!("{self}"),
self.signature(),
input_expr_types,
))
})?;

match self {
AggregateFunction::Count | AggregateFunction::ApproxDistinct => {
Expand Down
111 changes: 67 additions & 44 deletions datafusion/expr/src/type_coercion/aggregates.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ use arrow::datatypes::{
DataType, TimeUnit, DECIMAL128_MAX_PRECISION, DECIMAL128_MAX_SCALE,
DECIMAL256_MAX_PRECISION, DECIMAL256_MAX_SCALE,
};

use datafusion_common::{internal_err, plan_err, DataFusionError, Result};
use std::ops::Deref;

Expand Down Expand Up @@ -89,6 +90,7 @@ pub fn coerce_types(
input_types: &[DataType],
signature: &Signature,
) -> Result<Vec<DataType>> {
use DataType::*;
// Validate input_types matches (at least one of) the func signature.
check_arg_count(agg_fun, input_types, &signature.type_signature)?;

Expand All @@ -105,26 +107,44 @@ pub fn coerce_types(
AggregateFunction::Sum => {
// Refer to https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
// smallint, int, bigint, real, double precision, decimal, or interval.
if !is_sum_support_arg_type(&input_types[0]) {
return plan_err!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun,
input_types[0]
);
}
Ok(input_types.to_vec())
let v = match &input_types[0] {
Decimal128(p, s) => Decimal128(*p, *s),
Decimal256(p, s) => Decimal256(*p, *s),
d if d.is_signed_integer() => Int64,
d if d.is_unsigned_integer() => UInt64,
d if d.is_floating() => Float64,
Dictionary(_, v) => {
return coerce_types(agg_fun, &[v.as_ref().clone()], signature)
}
_ => {
return plan_err!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun,
input_types[0]
)
}
};
Ok(vec![v])
}
AggregateFunction::Avg => {
// Refer to https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
// smallint, int, bigint, real, double precision, decimal, or interval
if !is_avg_support_arg_type(&input_types[0]) {
return plan_err!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun,
input_types[0]
);
}
Ok(input_types.to_vec())
let v = match &input_types[0] {
Decimal128(p, s) => Decimal128(*p, *s),
Decimal256(p, s) => Decimal256(*p, *s),
d if d.is_numeric() => Float64,
Dictionary(_, v) => {
return coerce_types(agg_fun, &[v.as_ref().clone()], signature)
}
_ => {
return plan_err!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun,
input_types[0]
)
}
};
Ok(vec![v])
}
AggregateFunction::BitAnd
| AggregateFunction::BitOr
Expand Down Expand Up @@ -160,7 +180,7 @@ pub fn coerce_types(
input_types[0]
);
}
Ok(input_types.to_vec())
Ok(vec![Float64, Float64])
}
AggregateFunction::Covariance | AggregateFunction::CovariancePop => {
if !is_covariance_support_arg_type(&input_types[0]) {
Expand All @@ -170,7 +190,7 @@ pub fn coerce_types(
input_types[0]
);
}
Ok(input_types.to_vec())
Ok(vec![Float64, Float64])
}
AggregateFunction::Stddev | AggregateFunction::StddevPop => {
if !is_stddev_support_arg_type(&input_types[0]) {
Expand All @@ -180,7 +200,7 @@ pub fn coerce_types(
input_types[0]
);
}
Ok(input_types.to_vec())
Ok(vec![Float64])
}
AggregateFunction::Correlation => {
if !is_correlation_support_arg_type(&input_types[0]) {
Expand All @@ -190,7 +210,7 @@ pub fn coerce_types(
input_types[0]
);
}
Ok(input_types.to_vec())
Ok(vec![Float64, Float64])
}
AggregateFunction::RegrSlope
| AggregateFunction::RegrIntercept
Expand All @@ -211,7 +231,7 @@ pub fn coerce_types(
input_types[0]
);
}
Ok(input_types.to_vec())
Ok(vec![Float64, Float64])
}
AggregateFunction::ApproxPercentileCont => {
if !is_approx_percentile_cont_supported_arg_type(&input_types[0]) {
Expand Down Expand Up @@ -357,11 +377,9 @@ fn get_min_max_result_type(input_types: &[DataType]) -> Result<Vec<DataType>> {
/// function return type of a sum
pub fn sum_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
arg_type if SIGNED_INTEGERS.contains(arg_type) => Ok(DataType::Int64),
arg_type if UNSIGNED_INTEGERS.contains(arg_type) => Ok(DataType::UInt64),
// In the https://www.postgresql.org/docs/current/functions-aggregate.html doc,
// the result type of floating-point is FLOAT64 with the double precision.
DataType::Float64 | DataType::Float32 => Ok(DataType::Float64),
DataType::Int64 => Ok(DataType::Int64),
DataType::UInt64 => Ok(DataType::UInt64),
DataType::Float64 => Ok(DataType::Float64),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It looked like we lost support for Float32 -- but then I see the test below for it, so 👍 (presumably what happens is the arguments are coerced first and arg_type refers to the post coerced type)

DataType::Decimal128(precision, scale) => {
// in the spark, the result type is DECIMAL(min(38,precision+10), s)
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
Expand All @@ -374,9 +392,6 @@ pub fn sum_return_type(arg_type: &DataType) -> Result<DataType> {
let new_precision = DECIMAL256_MAX_PRECISION.min(*precision + 10);
Ok(DataType::Decimal256(new_precision, *scale))
}
DataType::Dictionary(_, dict_value_type) => {
sum_return_type(dict_value_type.as_ref())
}
other => plan_err!("SUM does not support type \"{other:?}\""),
}
}
Expand Down Expand Up @@ -601,21 +616,29 @@ mod tests {
assert_eq!(*input_type, result.unwrap());
}
}
// test sum, avg
let funs = vec![AggregateFunction::Sum, AggregateFunction::Avg];
let input_types = vec![
vec![DataType::Int32],
vec![DataType::Float32],
vec![DataType::Decimal128(20, 3)],
vec![DataType::Decimal256(20, 3)],
];
for fun in funs {
for input_type in &input_types {
let signature = fun.signature();
let result = coerce_types(&fun, input_type, &signature);
assert_eq!(*input_type, result.unwrap());
}
}
// test sum
let fun = AggregateFunction::Sum;
let signature = fun.signature();
let r = coerce_types(&fun, &[DataType::Int32], &signature).unwrap();
assert_eq!(r[0], DataType::Int64);
let r = coerce_types(&fun, &[DataType::Float32], &signature).unwrap();
assert_eq!(r[0], DataType::Float64);
let r = coerce_types(&fun, &[DataType::Decimal128(20, 3)], &signature).unwrap();
assert_eq!(r[0], DataType::Decimal128(20, 3));
let r = coerce_types(&fun, &[DataType::Decimal256(20, 3)], &signature).unwrap();
assert_eq!(r[0], DataType::Decimal256(20, 3));

// test avg
let fun = AggregateFunction::Avg;
let signature = fun.signature();
let r = coerce_types(&fun, &[DataType::Int32], &signature).unwrap();
assert_eq!(r[0], DataType::Float64);
let r = coerce_types(&fun, &[DataType::Float32], &signature).unwrap();
assert_eq!(r[0], DataType::Float64);
let r = coerce_types(&fun, &[DataType::Decimal128(20, 3)], &signature).unwrap();
assert_eq!(r[0], DataType::Decimal128(20, 3));
let r = coerce_types(&fun, &[DataType::Decimal256(20, 3)], &signature).unwrap();
assert_eq!(r[0], DataType::Decimal256(20, 3));

// ApproxPercentileCont input types
let input_types = vec![
Expand Down
21 changes: 17 additions & 4 deletions datafusion/optimizer/src/analyzer/type_coercion.rs
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,8 @@ use datafusion_expr::type_coercion::{is_datetime, is_numeric, is_utf8_or_large_u
use datafusion_expr::utils::from_plan;
use datafusion_expr::{
is_false, is_not_false, is_not_true, is_not_unknown, is_true, is_unknown,
type_coercion, AggregateFunction, BuiltinScalarFunction, Expr, LogicalPlan, Operator,
Projection, WindowFrame, WindowFrameBound, WindowFrameUnits,
type_coercion, window_function, AggregateFunction, BuiltinScalarFunction, Expr,
LogicalPlan, Operator, Projection, WindowFrame, WindowFrameBound, WindowFrameUnits,
};
use datafusion_expr::{ExprSchemable, Signature};

Expand Down Expand Up @@ -381,6 +381,19 @@ impl TreeNodeRewriter for TypeCoercionRewriter {
}) => {
let window_frame =
coerce_window_frame(window_frame, &self.schema, &order_by)?;

let args = match &fun {
window_function::WindowFunction::AggregateFunction(fun) => {
coerce_agg_exprs_for_signature(
fun,
&args,
&self.schema,
&fun.signature(),
)?
}
_ => args,
};

let expr = Expr::WindowFunction(WindowFunction::new(
fun,
args,
Expand Down Expand Up @@ -961,7 +974,7 @@ mod test {
None,
));
let plan = LogicalPlan::Projection(Projection::try_new(vec![agg_expr], empty)?);
let expected = "Projection: AVG(Int64(12))\n EmptyRelation";
let expected = "Projection: AVG(CAST(Int64(12) AS Float64))\n EmptyRelation";
assert_analyzed_plan_eq(Arc::new(TypeCoercion::new()), &plan, expected)?;

let empty = empty_with_type(DataType::Int32);
Expand All @@ -974,7 +987,7 @@ mod test {
None,
));
let plan = LogicalPlan::Projection(Projection::try_new(vec![agg_expr], empty)?);
let expected = "Projection: AVG(a)\n EmptyRelation";
let expected = "Projection: AVG(CAST(a AS Float64))\n EmptyRelation";
assert_analyzed_plan_eq(Arc::new(TypeCoercion::new()), &plan, expected)?;
Ok(())
}
Expand Down
2 changes: 1 addition & 1 deletion datafusion/optimizer/tests/optimizer_integration.rs
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ fn subquery_filter_with_cast() -> Result<()> {
\n Inner Join: Filter: CAST(test.col_int32 AS Float64) > __scalar_sq_1.AVG(test.col_int32)\
\n TableScan: test projection=[col_int32]\
\n SubqueryAlias: __scalar_sq_1\
\n Aggregate: groupBy=[[]], aggr=[[AVG(test.col_int32)]]\
\n Aggregate: groupBy=[[]], aggr=[[AVG(CAST(test.col_int32 AS Float64))]]\
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it is actually nice to see the explicit cast I think

\n Projection: test.col_int32\
\n Filter: test.col_utf8 >= Utf8(\"2002-05-08\") AND test.col_utf8 <= Utf8(\"2002-05-13\")\
\n TableScan: test projection=[col_int32, col_utf8]";
Expand Down
Loading