Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(function): add greatest function #12474

Draft
wants to merge 3 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
250 changes: 250 additions & 0 deletions datafusion/functions/src/core/greatest.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::any::Any;

use arrow::array::{make_comparator, Array, ArrayRef, BooleanArray};
use arrow::compute::kernels::cmp;
use arrow::compute::kernels::zip::zip;
use arrow::compute::SortOptions;
use arrow::datatypes::DataType;
use arrow_buffer::BooleanBuffer;
use datafusion_common::{exec_err, plan_err, Result, ScalarValue};
use datafusion_expr::type_coercion::functions::can_coerce_from;
use datafusion_expr::{ColumnarValue};
use datafusion_expr::{ScalarUDFImpl, Signature, Volatility};

const SORT_OPTIONS: SortOptions = SortOptions {
// We want greatest first
descending: false,

// NULL will be less than any other value
nulls_first: true,
};

#[derive(Debug)]
pub struct GreatestFunc {
signature: Signature,
}

impl Default for GreatestFunc {
fn default() -> Self {
GreatestFunc::new()
}
}

impl GreatestFunc {
pub fn new() -> Self {
Self {
signature: Signature::user_defined(Volatility::Immutable),
}
}
}


/// Return boolean array where `arr[i] = lhs[i] >= rhs[i]` for all i, where `arr` is the result array
/// Nulls are always considered smaller than any other value
fn get_larger(lhs: &dyn Array, rhs: &dyn Array) -> Result<BooleanArray> {
// Fast path:
// If both arrays are not nested, have the same length and no nulls, we can use the faster vectorised kernel
// - If both arrays are not nested: Nested types, such as lists, are not supported as the null semantics are not well-defined.
// - both array does not have any nulls: cmp::gt_eq will return null if any of the input is null while we want to return false in that case
if !lhs.data_type().is_nested() && lhs.null_count() == 0 && rhs.null_count() == 0 {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this probably should use logical null count

return cmp::gt_eq(&lhs, &rhs).map_err(|e| e.into());
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please add a test with float NaN values.

}

let cmp = make_comparator(lhs, rhs, SORT_OPTIONS)?;

let len = lhs.len().min(rhs.len());
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

they array lengths should be equal (otherwise we would be losing data)


let values = BooleanBuffer::collect_bool(len, |i| cmp(i, i).is_ge());

// No nulls as we only want to keep the values that are larger, its either true or false
Ok(BooleanArray::new(values, None))
}

/// Return array where the largest value at each index is kept
fn keep_larger(lhs: ArrayRef, rhs: ArrayRef) -> Result<ArrayRef> {
// True for values that we should keep from the left array
let keep_lhs = get_larger(lhs.as_ref(), rhs.as_ref())?;

let larger = zip(&keep_lhs, &lhs, &rhs)?;

Ok(larger)
}

fn keep_larger_scalar<'a>(lhs: &'a ScalarValue, rhs: &'a ScalarValue) -> Result<&'a ScalarValue> {
if !lhs.data_type().is_nested() {
return if lhs >= rhs {
Ok(lhs)
} else {
Ok(rhs)
};
}

// If complex type we can't compare directly as we want null values to be smaller
let cmp = make_comparator(
lhs.to_array()?.as_ref(),
rhs.to_array()?.as_ref(),
SORT_OPTIONS,
)?;

if cmp(0, 0).is_ge() {
Ok(lhs)
} else {
Ok(rhs)
}
}


fn find_coerced_type(data_types: &[DataType]) -> Result<&DataType> {
let non_null_types = data_types
.iter()
.filter(|t| !t.is_null())
.collect::<Vec<_>>();

if non_null_types.is_empty() {
return Ok(&DataType::Null);
}

let non_null_types_clone = non_null_types.clone();

for data_type in non_null_types_clone {
let can_coerce_to_all = non_null_types.iter().all(|t| can_coerce_from(data_type, t));

if can_coerce_to_all {
return Ok(data_type);
Comment on lines +127 to +130
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This should be looking for the common super type between types rather than hoping one arg has a type that's common super type for other

for example greatest(a_decimal_10_3, a decimal_10_4) should return decimal(11,4)

Copy link
Author

@rluvaton rluvaton Nov 15, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should I use ‎comparison_coercion‎ or is there a better suited function?

found type_union_resolution which states in the function description it should be used for greatest

}
}

plan_err!("Cannot find a common type for arguments")
}

impl ScalarUDFImpl for GreatestFunc {
fn as_any(&self) -> &dyn Any {
self
}

fn name(&self) -> &str {
"greatest"
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
find_coerced_type(arg_types).cloned()
}

fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
// do not accept less than 2 arguments.
if args.len() < 2 {
return exec_err!(
"greatest was called with {} arguments. It requires at least 2.",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Some engines (eg SQL Server) allow greatest with single arg.
(It's no-op of course)

args.len()
);
}

// Split to scalars and arrays for later optimization
let (scalars, arrays): (Vec<_>, Vec<_>) = args.iter().partition(|x| match x {
ColumnarValue::Scalar(_) => true,
ColumnarValue::Array(_) => false,
});

let mut arrays_iter = arrays
.iter()
.map(|x| match x {
ColumnarValue::Array(a) => a,
_ => unreachable!(),
});

let first_array = arrays_iter.next();

let mut largest: ArrayRef;

// Optimization: merge all scalars into one to avoid recomputing
if !scalars.is_empty() {
let mut scalars_iter = scalars
.iter()
.map(|x| match x {
ColumnarValue::Scalar(s) => s,
_ => unreachable!(),
});

// We have at least one scalar
let mut largest_scalar = scalars_iter.next().unwrap();

for scalar in scalars_iter {
largest_scalar = keep_larger_scalar(largest_scalar, scalar)?;
}

// If we only have scalars, return the largest one
if arrays.is_empty() {
return Ok(ColumnarValue::Scalar(largest_scalar.clone()));
}

// We have at least one array
let first_array = first_array.unwrap();

// Start with the largest value
largest = keep_larger(
first_array.clone(),
largest_scalar.to_array_of_size(first_array.len())?
)?;
} else {
// If we only have arrays, start with the first array
// (We must have at least one array)
largest = first_array.unwrap().clone();
}

for array in arrays_iter {
largest = keep_larger(array.clone(), largest)?;
}

Ok(ColumnarValue::Array(largest))
}

fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
if arg_types.len() < 2 {
return exec_err!(
"greatest was called with {} arguments. It requires at least 2.",
arg_types.len()
);
}

let coerced_type = find_coerced_type(arg_types)?;

Ok(vec![coerced_type.clone(); arg_types.len()])
}
}

#[cfg(test)]
mod test {
use crate::core;
use arrow::datatypes::DataType;
use datafusion_expr::ScalarUDFImpl;

#[test]
fn test_greatest_return_types() {
let greatest = core::greatest::GreatestFunc::new();
let return_type = greatest
.return_type(&[DataType::Int8, DataType::Int16])
.unwrap();
assert_eq!(return_type, DataType::Int16);
}
}
7 changes: 7 additions & 0 deletions datafusion/functions/src/core/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ pub mod nvl2;
pub mod planner;
pub mod r#struct;
pub mod version;
pub mod greatest;

// create UDFs
make_udf_function!(arrow_cast::ArrowCastFunc, ARROW_CAST, arrow_cast);
Expand All @@ -43,6 +44,7 @@ make_udf_function!(r#struct::StructFunc, STRUCT, r#struct);
make_udf_function!(named_struct::NamedStructFunc, NAMED_STRUCT, named_struct);
make_udf_function!(getfield::GetFieldFunc, GET_FIELD, get_field);
make_udf_function!(coalesce::CoalesceFunc, COALESCE, coalesce);
make_udf_function!(greatest::GreatestFunc, GREATEST, greatest);
make_udf_function!(version::VersionFunc, VERSION, version);

pub mod expr_fn {
Expand Down Expand Up @@ -80,6 +82,10 @@ pub mod expr_fn {
coalesce,
"Returns `coalesce(args...)`, which evaluates to the value of the first expr which is not NULL",
args,
),(
greatest,
"Returns `greatest(args...)`, which evaluates to the greatest value in the list of expressions or NULL if all the expressions are NULL",
args,
));

#[doc = "Returns the value of the field with the given name from the struct"]
Expand All @@ -106,6 +112,7 @@ pub fn functions() -> Vec<Arc<ScalarUDF>> {
// calls to `get_field`
get_field(),
coalesce(),
greatest(),
version(),
]
}
Loading