-
Notifications
You must be signed in to change notification settings - Fork 1.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat(function): add greatest function #12474
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use std::any::Any; | ||
|
||
use arrow::array::{make_comparator, Array, ArrayRef, BooleanArray}; | ||
use arrow::compute::kernels::cmp; | ||
use arrow::compute::kernels::zip::zip; | ||
use arrow::compute::SortOptions; | ||
use arrow::datatypes::DataType; | ||
use arrow_buffer::BooleanBuffer; | ||
use datafusion_common::{exec_err, plan_err, Result, ScalarValue}; | ||
use datafusion_expr::type_coercion::functions::can_coerce_from; | ||
use datafusion_expr::{ColumnarValue}; | ||
use datafusion_expr::{ScalarUDFImpl, Signature, Volatility}; | ||
|
||
const SORT_OPTIONS: SortOptions = SortOptions { | ||
// We want greatest first | ||
descending: false, | ||
|
||
// NULL will be less than any other value | ||
nulls_first: true, | ||
}; | ||
|
||
#[derive(Debug)] | ||
pub struct GreatestFunc { | ||
signature: Signature, | ||
} | ||
|
||
impl Default for GreatestFunc { | ||
fn default() -> Self { | ||
GreatestFunc::new() | ||
} | ||
} | ||
|
||
impl GreatestFunc { | ||
pub fn new() -> Self { | ||
Self { | ||
signature: Signature::user_defined(Volatility::Immutable), | ||
} | ||
} | ||
} | ||
|
||
|
||
/// Return boolean array where `arr[i] = lhs[i] >= rhs[i]` for all i, where `arr` is the result array | ||
/// Nulls are always considered smaller than any other value | ||
fn get_larger(lhs: &dyn Array, rhs: &dyn Array) -> Result<BooleanArray> { | ||
// Fast path: | ||
// If both arrays are not nested, have the same length and no nulls, we can use the faster vectorised kernel | ||
// - If both arrays are not nested: Nested types, such as lists, are not supported as the null semantics are not well-defined. | ||
// - both array does not have any nulls: cmp::gt_eq will return null if any of the input is null while we want to return false in that case | ||
if !lhs.data_type().is_nested() && lhs.null_count() == 0 && rhs.null_count() == 0 { | ||
return cmp::gt_eq(&lhs, &rhs).map_err(|e| e.into()); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please add a test with float NaN values. |
||
} | ||
|
||
let cmp = make_comparator(lhs, rhs, SORT_OPTIONS)?; | ||
|
||
let len = lhs.len().min(rhs.len()); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. they array lengths should be equal (otherwise we would be losing data) |
||
|
||
let values = BooleanBuffer::collect_bool(len, |i| cmp(i, i).is_ge()); | ||
|
||
// No nulls as we only want to keep the values that are larger, its either true or false | ||
Ok(BooleanArray::new(values, None)) | ||
} | ||
|
||
/// Return array where the largest value at each index is kept | ||
fn keep_larger(lhs: ArrayRef, rhs: ArrayRef) -> Result<ArrayRef> { | ||
// True for values that we should keep from the left array | ||
let keep_lhs = get_larger(lhs.as_ref(), rhs.as_ref())?; | ||
|
||
let larger = zip(&keep_lhs, &lhs, &rhs)?; | ||
|
||
Ok(larger) | ||
} | ||
|
||
fn keep_larger_scalar<'a>(lhs: &'a ScalarValue, rhs: &'a ScalarValue) -> Result<&'a ScalarValue> { | ||
if !lhs.data_type().is_nested() { | ||
return if lhs >= rhs { | ||
Ok(lhs) | ||
} else { | ||
Ok(rhs) | ||
}; | ||
} | ||
|
||
// If complex type we can't compare directly as we want null values to be smaller | ||
let cmp = make_comparator( | ||
lhs.to_array()?.as_ref(), | ||
rhs.to_array()?.as_ref(), | ||
SORT_OPTIONS, | ||
)?; | ||
|
||
if cmp(0, 0).is_ge() { | ||
Ok(lhs) | ||
} else { | ||
Ok(rhs) | ||
} | ||
} | ||
|
||
|
||
fn find_coerced_type(data_types: &[DataType]) -> Result<&DataType> { | ||
let non_null_types = data_types | ||
.iter() | ||
.filter(|t| !t.is_null()) | ||
.collect::<Vec<_>>(); | ||
|
||
if non_null_types.is_empty() { | ||
return Ok(&DataType::Null); | ||
} | ||
|
||
let non_null_types_clone = non_null_types.clone(); | ||
|
||
for data_type in non_null_types_clone { | ||
let can_coerce_to_all = non_null_types.iter().all(|t| can_coerce_from(data_type, t)); | ||
|
||
if can_coerce_to_all { | ||
return Ok(data_type); | ||
Comment on lines
+127
to
+130
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This should be looking for the common super type between types rather than hoping one arg has a type that's common super type for other for example There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
found |
||
} | ||
} | ||
|
||
plan_err!("Cannot find a common type for arguments") | ||
} | ||
|
||
impl ScalarUDFImpl for GreatestFunc { | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn name(&self) -> &str { | ||
"greatest" | ||
} | ||
|
||
fn signature(&self) -> &Signature { | ||
&self.signature | ||
} | ||
|
||
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> { | ||
find_coerced_type(arg_types).cloned() | ||
} | ||
|
||
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> { | ||
// do not accept less than 2 arguments. | ||
if args.len() < 2 { | ||
return exec_err!( | ||
"greatest was called with {} arguments. It requires at least 2.", | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Some engines (eg SQL Server) allow greatest with single arg. |
||
args.len() | ||
); | ||
} | ||
|
||
// Split to scalars and arrays for later optimization | ||
let (scalars, arrays): (Vec<_>, Vec<_>) = args.iter().partition(|x| match x { | ||
ColumnarValue::Scalar(_) => true, | ||
ColumnarValue::Array(_) => false, | ||
}); | ||
|
||
let mut arrays_iter = arrays | ||
.iter() | ||
.map(|x| match x { | ||
ColumnarValue::Array(a) => a, | ||
_ => unreachable!(), | ||
}); | ||
|
||
let first_array = arrays_iter.next(); | ||
|
||
let mut largest: ArrayRef; | ||
|
||
// Optimization: merge all scalars into one to avoid recomputing | ||
if !scalars.is_empty() { | ||
let mut scalars_iter = scalars | ||
.iter() | ||
.map(|x| match x { | ||
ColumnarValue::Scalar(s) => s, | ||
_ => unreachable!(), | ||
}); | ||
|
||
// We have at least one scalar | ||
let mut largest_scalar = scalars_iter.next().unwrap(); | ||
|
||
for scalar in scalars_iter { | ||
largest_scalar = keep_larger_scalar(largest_scalar, scalar)?; | ||
} | ||
|
||
// If we only have scalars, return the largest one | ||
if arrays.is_empty() { | ||
return Ok(ColumnarValue::Scalar(largest_scalar.clone())); | ||
} | ||
|
||
// We have at least one array | ||
let first_array = first_array.unwrap(); | ||
|
||
// Start with the largest value | ||
largest = keep_larger( | ||
first_array.clone(), | ||
largest_scalar.to_array_of_size(first_array.len())? | ||
)?; | ||
} else { | ||
// If we only have arrays, start with the first array | ||
// (We must have at least one array) | ||
largest = first_array.unwrap().clone(); | ||
} | ||
|
||
for array in arrays_iter { | ||
largest = keep_larger(array.clone(), largest)?; | ||
} | ||
|
||
Ok(ColumnarValue::Array(largest)) | ||
} | ||
|
||
fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> { | ||
if arg_types.len() < 2 { | ||
return exec_err!( | ||
"greatest was called with {} arguments. It requires at least 2.", | ||
arg_types.len() | ||
); | ||
} | ||
|
||
let coerced_type = find_coerced_type(arg_types)?; | ||
|
||
Ok(vec![coerced_type.clone(); arg_types.len()]) | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod test { | ||
use crate::core; | ||
use arrow::datatypes::DataType; | ||
use datafusion_expr::ScalarUDFImpl; | ||
|
||
#[test] | ||
fn test_greatest_return_types() { | ||
let greatest = core::greatest::GreatestFunc::new(); | ||
let return_type = greatest | ||
.return_type(&[DataType::Int8, DataType::Int16]) | ||
.unwrap(); | ||
assert_eq!(return_type, DataType::Int16); | ||
} | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this probably should use logical null count