Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adding benchmark for extracting arrow statistics from parquet #10610

Merged
merged 3 commits into from
May 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions datafusion/core/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -209,3 +209,7 @@ name = "sort"
[[bench]]
harness = false
name = "topk_aggregate"

[[bench]]
harness = false
name = "parquet_statistic"
205 changes: 205 additions & 0 deletions datafusion/core/benches/parquet_statistic.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! Benchmarks of benchmark for extracting arrow statistics from parquet

use arrow::array::{ArrayRef, DictionaryArray, Float64Array, StringArray, UInt64Array};
use arrow_array::{Int32Array, RecordBatch};
use arrow_schema::{
DataType::{self, *},
Field, Schema,
};
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion};
use datafusion::datasource::physical_plan::parquet::{
RequestedStatistics, StatisticsConverter,
};
use parquet::arrow::{arrow_reader::ArrowReaderBuilder, ArrowWriter};
use parquet::file::properties::WriterProperties;
use std::sync::Arc;
use tempfile::NamedTempFile;
#[derive(Debug, Clone)]
enum TestTypes {
UInt64,
F64,
String,
Dictionary,
}

use std::fmt;

impl fmt::Display for TestTypes {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
TestTypes::UInt64 => write!(f, "UInt64"),
TestTypes::F64 => write!(f, "F64"),
TestTypes::String => write!(f, "String"),
TestTypes::Dictionary => write!(f, "Dictionary(Int32, String)"),
}
}
}

fn create_parquet_file(dtype: TestTypes, row_groups: usize) -> NamedTempFile {
let schema = match dtype {
TestTypes::UInt64 => {
Arc::new(Schema::new(vec![Field::new("col", DataType::UInt64, true)]))
}
TestTypes::F64 => Arc::new(Schema::new(vec![Field::new(
"col",
DataType::Float64,
true,
)])),
TestTypes::String => {
Arc::new(Schema::new(vec![Field::new("col", DataType::Utf8, true)]))
}
TestTypes::Dictionary => Arc::new(Schema::new(vec![Field::new(
"col",
DataType::Dictionary(Box::new(Int32), Box::new(Utf8)),
true,
)])),
};

let props = WriterProperties::builder().build();
let file = tempfile::Builder::new()
.suffix(".parquet")
.tempfile()
.unwrap();
let mut writer =
ArrowWriter::try_new(file.reopen().unwrap(), schema.clone(), Some(props))
.unwrap();

for _ in 0..row_groups {
let batch = match dtype {
TestTypes::UInt64 => make_uint64_batch(),
TestTypes::F64 => make_f64_batch(),
TestTypes::String => make_string_batch(),
TestTypes::Dictionary => make_dict_batch(),
};
writer.write(&batch).unwrap();
}
writer.close().unwrap();
file
}

fn make_uint64_batch() -> RecordBatch {
let array: ArrayRef = Arc::new(UInt64Array::from(vec![
Some(1),
Some(2),
Some(3),
Some(4),
Some(5),
]));
RecordBatch::try_new(
Arc::new(arrow::datatypes::Schema::new(vec![
arrow::datatypes::Field::new("col", UInt64, false),
])),
vec![array],
)
.unwrap()
}

fn make_f64_batch() -> RecordBatch {
let array: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0]));
RecordBatch::try_new(
Arc::new(arrow::datatypes::Schema::new(vec![
arrow::datatypes::Field::new("col", Float64, false),
])),
vec![array],
)
.unwrap()
}

fn make_string_batch() -> RecordBatch {
let array: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d", "e"]));
RecordBatch::try_new(
Arc::new(arrow::datatypes::Schema::new(vec![
arrow::datatypes::Field::new("col", Utf8, false),
])),
vec![array],
)
.unwrap()
}

fn make_dict_batch() -> RecordBatch {
let keys = Int32Array::from(vec![0, 1, 2, 3, 4]);
let values = StringArray::from(vec!["a", "b", "c", "d", "e"]);
let array: ArrayRef =
Arc::new(DictionaryArray::try_new(keys, Arc::new(values)).unwrap());
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new(
"col",
Dictionary(Box::new(Int32), Box::new(Utf8)),
false,
)])),
vec![array],
)
.unwrap()
}

fn criterion_benchmark(c: &mut Criterion) {
let row_groups = 100;
use TestTypes::*;
let types = vec![UInt64, F64, String, Dictionary];

for dtype in types {
let file = create_parquet_file(dtype.clone(), row_groups);
let file = file.reopen().unwrap();
let reader = ArrowReaderBuilder::try_new(file).unwrap();
let metadata = reader.metadata();

let mut group =
c.benchmark_group(format!("Extract statistics for {}", dtype.clone()));
group.bench_function(
BenchmarkId::new("extract_statistics", dtype.clone()),
|b| {
b.iter(|| {
let _ = StatisticsConverter::try_new(
"col",
RequestedStatistics::Min,
reader.schema(),
)
.unwrap()
.extract(metadata)
.unwrap();

let _ = StatisticsConverter::try_new(
"col",
RequestedStatistics::Max,
reader.schema(),
)
.unwrap()
.extract(reader.metadata())
.unwrap();

let _ = StatisticsConverter::try_new(
"col",
RequestedStatistics::NullCount,
reader.schema(),
)
.unwrap()
.extract(reader.metadata())
.unwrap();

let _ = StatisticsConverter::row_counts(reader.metadata()).unwrap();
})
},
);
group.finish();
}
}

criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);