Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add compression options #456

Merged
merged 1 commit into from
Aug 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 37 additions & 1 deletion datafusion/tests/test_context.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import gzip
import os

import pyarrow as pa
Expand Down Expand Up @@ -336,11 +336,47 @@ def test_read_json(ctx):
assert result[0].column(1) == pa.array([1, 2, 3])


def test_read_json_compressed(ctx, tmp_path):
path = os.path.dirname(os.path.abspath(__file__))
test_data_path = os.path.join(path, "data_test_context", "data.json")

# File compression type
gzip_path = tmp_path / "data.json.gz"

with open(test_data_path, "rb") as csv_file:
with gzip.open(gzip_path, "wb") as gzipped_file:
gzipped_file.writelines(csv_file)

df = ctx.read_json(
gzip_path, file_extension=".gz", file_compression_type="gz"
)
result = df.collect()

assert result[0].column(0) == pa.array(["a", "b", "c"])
assert result[0].column(1) == pa.array([1, 2, 3])


def test_read_csv(ctx):
csv_df = ctx.read_csv(path="testing/data/csv/aggregate_test_100.csv")
csv_df.select(column("c1")).show()


def test_read_csv_compressed(ctx, tmp_path):
test_data_path = "testing/data/csv/aggregate_test_100.csv"

# File compression type
gzip_path = tmp_path / "aggregate_test_100.csv.gz"

with open(test_data_path, "rb") as csv_file:
with gzip.open(gzip_path, "wb") as gzipped_file:
gzipped_file.writelines(csv_file)

csv_df = ctx.read_csv(
gzip_path, file_extension=".gz", file_compression_type="gz"
)
csv_df.select(column("c1")).show()


def test_read_parquet(ctx):
csv_df = ctx.read_parquet(path="parquet/data/alltypes_plain.parquet")
csv_df.show()
Expand Down
23 changes: 21 additions & 2 deletions datafusion/tests/test_sql.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
import pyarrow as pa
import pyarrow.dataset as ds
import pytest
import gzip

from datafusion import udf

Expand All @@ -32,6 +33,7 @@ def test_no_table(ctx):

def test_register_csv(ctx, tmp_path):
path = tmp_path / "test.csv"
gzip_path = tmp_path / "test.csv.gz"

table = pa.Table.from_arrays(
[
Expand All @@ -43,6 +45,10 @@ def test_register_csv(ctx, tmp_path):
)
pa.csv.write_csv(table, path)

with open(path, "rb") as csv_file:
with gzip.open(gzip_path, "wb") as gzipped_file:
gzipped_file.writelines(csv_file)

ctx.register_csv("csv", path)
ctx.register_csv("csv1", str(path))
ctx.register_csv(
Expand All @@ -52,6 +58,13 @@ def test_register_csv(ctx, tmp_path):
delimiter=",",
schema_infer_max_records=10,
)
ctx.register_csv(
"csv_gzip",
gzip_path,
file_extension="gz",
file_compression_type="gzip",
)

alternative_schema = pa.schema(
[
("some_int", pa.int16()),
Expand All @@ -61,9 +74,9 @@ def test_register_csv(ctx, tmp_path):
)
ctx.register_csv("csv3", path, schema=alternative_schema)

assert ctx.tables() == {"csv", "csv1", "csv2", "csv3"}
assert ctx.tables() == {"csv", "csv1", "csv2", "csv3", "csv_gzip"}

for table in ["csv", "csv1", "csv2"]:
for table in ["csv", "csv1", "csv2", "csv_gzip"]:
result = ctx.sql(f"SELECT COUNT(int) AS cnt FROM {table}").collect()
result = pa.Table.from_batches(result)
assert result.to_pydict() == {"cnt": [4]}
Expand All @@ -77,6 +90,12 @@ def test_register_csv(ctx, tmp_path):
):
ctx.register_csv("csv4", path, delimiter="wrong")

with pytest.raises(
ValueError,
match="file_compression_type must one of: gzip, bz2, xz, zstd",
):
ctx.register_csv("csv4", path, file_compression_type="rar")


def test_register_parquet(ctx, tmp_path):
path = helpers.write_parquet(tmp_path / "a.parquet", helpers.data())
Expand Down
31 changes: 25 additions & 6 deletions src/context.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

use std::collections::{HashMap, HashSet};
use std::path::PathBuf;
use std::str::FromStr;
use std::sync::Arc;

use object_store::ObjectStore;
Expand All @@ -40,6 +41,7 @@ use crate::utils::{get_tokio_runtime, wait_for_future};
use datafusion::arrow::datatypes::{DataType, Schema};
use datafusion::arrow::pyarrow::PyArrowType;
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::datasource::file_format::file_type::FileCompressionType;
use datafusion::datasource::MemTable;
use datafusion::datasource::TableProvider;
use datafusion::execution::context::{SessionConfig, SessionContext, TaskContext};
Expand Down Expand Up @@ -469,7 +471,8 @@ impl PySessionContext {
has_header=true,
delimiter=",",
schema_infer_max_records=1000,
file_extension=".csv"))]
file_extension=".csv",
file_compression_type=None))]
fn register_csv(
&mut self,
name: &str,
Expand All @@ -479,6 +482,7 @@ impl PySessionContext {
delimiter: &str,
schema_infer_max_records: usize,
file_extension: &str,
file_compression_type: Option<String>,
py: Python,
) -> PyResult<()> {
let path = path
Expand All @@ -495,7 +499,8 @@ impl PySessionContext {
.has_header(has_header)
.delimiter(delimiter[0])
.schema_infer_max_records(schema_infer_max_records)
.file_extension(file_extension);
.file_extension(file_extension)
.file_compression_type(parse_file_compression_type(file_compression_type)?);
options.schema = schema.as_ref().map(|x| &x.0);

let result = self.ctx.register_csv(name, path, options);
Expand Down Expand Up @@ -559,21 +564,23 @@ impl PySessionContext {
}

#[allow(clippy::too_many_arguments)]
#[pyo3(signature = (path, schema=None, schema_infer_max_records=1000, file_extension=".json", table_partition_cols=vec![]))]
#[pyo3(signature = (path, schema=None, schema_infer_max_records=1000, file_extension=".json", table_partition_cols=vec![], file_compression_type=None))]
fn read_json(
&mut self,
path: PathBuf,
schema: Option<PyArrowType<Schema>>,
schema_infer_max_records: usize,
file_extension: &str,
table_partition_cols: Vec<(String, String)>,
file_compression_type: Option<String>,
py: Python,
) -> PyResult<PyDataFrame> {
let path = path
.to_str()
.ok_or_else(|| PyValueError::new_err("Unable to convert path to a string"))?;
let mut options = NdJsonReadOptions::default()
.table_partition_cols(convert_table_partition_cols(table_partition_cols)?);
.table_partition_cols(convert_table_partition_cols(table_partition_cols)?)
.file_compression_type(parse_file_compression_type(file_compression_type)?);
options.schema_infer_max_records = schema_infer_max_records;
options.file_extension = file_extension;
let df = if let Some(schema) = schema {
Expand All @@ -595,7 +602,8 @@ impl PySessionContext {
delimiter=",",
schema_infer_max_records=1000,
file_extension=".csv",
table_partition_cols=vec![]))]
table_partition_cols=vec![],
file_compression_type=None))]
fn read_csv(
&self,
path: PathBuf,
Expand All @@ -605,6 +613,7 @@ impl PySessionContext {
schema_infer_max_records: usize,
file_extension: &str,
table_partition_cols: Vec<(String, String)>,
file_compression_type: Option<String>,
py: Python,
) -> PyResult<PyDataFrame> {
let path = path
Expand All @@ -623,7 +632,8 @@ impl PySessionContext {
.delimiter(delimiter[0])
.schema_infer_max_records(schema_infer_max_records)
.file_extension(file_extension)
.table_partition_cols(convert_table_partition_cols(table_partition_cols)?);
.table_partition_cols(convert_table_partition_cols(table_partition_cols)?)
.file_compression_type(parse_file_compression_type(file_compression_type)?);

if let Some(py_schema) = schema {
options.schema = Some(&py_schema.0);
Expand Down Expand Up @@ -743,6 +753,15 @@ fn convert_table_partition_cols(
.collect::<Result<Vec<_>, _>>()
}

fn parse_file_compression_type(
file_compression_type: Option<String>,
) -> Result<FileCompressionType, PyErr> {
FileCompressionType::from_str(&*file_compression_type.unwrap_or("".to_string()).as_str())
.map_err(|_| {
PyValueError::new_err("file_compression_type must one of: gzip, bz2, xz, zstd")
})
}

impl From<PySessionContext> for SessionContext {
fn from(ctx: PySessionContext) -> SessionContext {
ctx.ctx
Expand Down
Loading