-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6 from angelolab/update_viewer
Updated viewer widget and added AB test widget
- Loading branch information
Showing
5 changed files
with
544 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
import os | ||
import ipywidgets as widgets | ||
from IPython.core.display import HTML | ||
from IPython.display import display | ||
from io import BytesIO | ||
from skimage import io | ||
import numpy as np | ||
from natsort import natsorted | ||
from skimage.segmentation import find_boundaries | ||
|
||
|
||
class CellAnalyzer(object): | ||
def __init__( | ||
self, input_dir, cell_df, output_dir, | ||
segmentation_naming_convention, img_width='1000px', context=None | ||
): | ||
"""Viewer for Nimbus application. | ||
Args: | ||
input_dir (str): Path to directory containing individual channels of multiplexed images | ||
cell_df (pd.DataFrame): DataFrame with columns 'pixie_ct', 'nimbus_ct', 'fov', 'label' | ||
output_dir (str): Path to save output annotations | ||
segmentation_naming_convention (fn): Function that maps input path to segmentation path | ||
img_width (str): Width of images in viewer. | ||
context (int): area around the cell to display | ||
""" | ||
self.image_width = img_width | ||
self.input_dir = input_dir | ||
self.segmentation_naming_convention = segmentation_naming_convention | ||
self.cell_df = cell_df | ||
if "annotations" not in self.cell_df.columns: | ||
self.cell_df["annotations"] = [None]*len(self.cell_df) | ||
self.cell_ids = self.cell_df["Cell ID"].values.tolist() | ||
self.fov_names = self.cell_df["fov"].values | ||
self.output_dir = output_dir | ||
|
||
self.context = context | ||
display(HTML( | ||
"<style>.bottom_spacing_class {margin-bottom: 10px;}</style>" | ||
)) | ||
display(HTML( | ||
"<style>.left_spacing_class {margin-left: 60px;}</style>" | ||
)) | ||
display(HTML("<style>.font_size_class {line-height:30px;font-weight:500;font-size:200%;\ | ||
margin-left: 30px;}</style>")) | ||
self.update_button = widgets.Button(description="Update Image") | ||
self.update_button.on_click(self.update_button_click) | ||
self.update_button.add_class( | ||
"left_spacing_class" | ||
) | ||
self.overlay_checkbox = widgets.Checkbox( | ||
value=True, | ||
description='Overlay segmentations', | ||
disabled=False | ||
) | ||
self.model_button = widgets.RadioButtons( | ||
options=["Nimbus", "Pixie", "None"], description="Cell type", | ||
style=dict(font_size="18px") | ||
) | ||
self.model_button.add_class("font_size_class") | ||
|
||
self.save_annotations_button = widgets.Button(description="Save and next cell") | ||
self.save_annotations_button.on_click(self.save_annotations_button_click) | ||
self.save_annotations_button.add_class("left_spacing_class") | ||
|
||
self.cell_id_select = widgets.Select( | ||
options=self.cell_ids, | ||
description='Cell ID:', | ||
disabled=False | ||
) | ||
self.cell_id_select.observe(self.cell_id_select_fn, names='value') | ||
|
||
self.red_select = widgets.Select( | ||
options=[], | ||
description='Red:', | ||
disabled=False, | ||
layout=widgets.Layout(height='120px') | ||
) | ||
self.green_select = widgets.Select( | ||
options=[], | ||
description='Green:', | ||
disabled=False, | ||
layout=widgets.Layout(height='120px') | ||
) | ||
self.blue_select = widgets.Select( | ||
options=[], | ||
description='Blue:', | ||
disabled=False, | ||
layout=widgets.Layout(height='120px') | ||
) | ||
self.input_image = widgets.Image() | ||
self.output_image = widgets.Image() | ||
|
||
def cell_id_select_fn(self, change): | ||
"""Selects fov to display. | ||
Args: | ||
change (dict): Change dictionary from ipywidgets. | ||
""" | ||
fov = self.cell_df[self.cell_df["Cell ID"] == self.cell_id_select.value]["fov"].values[0] | ||
fov_path = os.path.join(self.input_dir, fov) | ||
channels = [ | ||
ch for ch in os.listdir(fov_path) if os.path.isfile(os.path.join(fov_path, ch)) | ||
] | ||
channels = [ch.split(".")[0] for ch in channels] | ||
self.red_select.options = natsorted(channels) | ||
self.green_select.options = natsorted(channels) | ||
self.blue_select.options = natsorted(channels) | ||
nimbus_ct = self.cell_df[ | ||
self.cell_df["Cell ID"] == self.cell_id_select.value | ||
]["nimbus_ct"].values[0] | ||
pixie_ct = self.cell_df[ | ||
self.cell_df["Cell ID"] == self.cell_id_select.value | ||
]["pixie_ct"].values[0] | ||
self.model_button.options = [nimbus_ct, pixie_ct, "None of the above"] | ||
|
||
def create_composite_image(self, path_dict, add_boundaries=True): | ||
"""Creates composite image from input paths. | ||
Args: | ||
path_dict (dict): Dictionary of paths to images. | ||
add_boundaries (bool): Whether to add boundaries to multiplex image. | ||
Returns: | ||
composite_image (np.array): Composite image. | ||
""" | ||
for k in ["red", "green", "blue"]: | ||
if k not in path_dict.keys(): | ||
path_dict[k] = None | ||
output_image = [] | ||
for k, p in path_dict.items(): | ||
if p: | ||
img = io.imread(p) | ||
output_image.append(img) | ||
else: | ||
non_none = [p for p in path_dict.values() if p] | ||
img = io.imread(non_none[0]) | ||
output_image.append(img*0) | ||
# add overlay of instances | ||
composite_image = np.stack(output_image, axis=-1) | ||
if self.segmentation_naming_convention and add_boundaries: | ||
fov_path = os.path.split(list(path_dict.values())[0])[0] | ||
seg_path = self.segmentation_naming_convention(fov_path) | ||
seg_img = io.imread(seg_path) | ||
seg_boundaries = find_boundaries(seg_img, mode='inner') | ||
individual_cell_boundary = seg_boundaries.copy() | ||
cell_mask = seg_img == self.cell_df[ | ||
self.cell_df["Cell ID"] == self.cell_id_select.value | ||
]["label"].values[0] | ||
individual_cell_boundary = np.logical_and(cell_mask, seg_boundaries) | ||
val = (np.max(composite_image, axis=(0,1))*0.5).astype(composite_image.dtype) | ||
val = np.min(val[val>0]) | ||
else: | ||
seg_boundaries = None | ||
individual_cell_boundary = None | ||
return composite_image, seg_boundaries, individual_cell_boundary | ||
|
||
def create_instance_image(self, path_dict, cell_id): | ||
"""Creates composite image from input paths. | ||
Args: | ||
path_dict (dict): Dictionary of paths to images. | ||
cell_id (int): id of cell to highlight | ||
Returns: | ||
composite_image (np.array): Composite image. | ||
""" | ||
# add overlay of instances | ||
fov_path = os.path.split(list(path_dict.values())[0])[0] | ||
seg_path = self.segmentation_naming_convention(fov_path) | ||
seg_img = io.imread(seg_path) | ||
seg_boundaries = find_boundaries(seg_img, mode='inner') | ||
seg_img[seg_boundaries] = 0 | ||
seg_img_clipped = np.clip(seg_img, 0, 1) * 0.2 | ||
seg_img_clipped[seg_img == cell_id] = 1 | ||
return seg_img_clipped | ||
|
||
def layout(self): | ||
"""Creates layout for viewer.""" | ||
channel_selectors = widgets.VBox([ | ||
self.red_select, | ||
self.green_select, | ||
self.blue_select | ||
]) | ||
self.input_image.layout.width = self.image_width | ||
self.output_image.layout.width = self.image_width | ||
self.input_image.layout.height = self.image_width | ||
self.output_image.layout.height = self.image_width | ||
|
||
layout = widgets.HBox([ | ||
widgets.VBox([ | ||
self.cell_id_select, | ||
channel_selectors, | ||
self.overlay_checkbox, | ||
self.update_button, | ||
widgets.VBox([ | ||
self.model_button, | ||
self.save_annotations_button | ||
]), | ||
], layout=widgets.Layout(width='30%')), | ||
widgets.HBox([ | ||
# input_html, | ||
self.input_image | ||
]), | ||
widgets.HBox([ | ||
# output_html, | ||
self.output_image | ||
]) | ||
]) | ||
display(layout) | ||
|
||
def search_for_similar(self, select_value): | ||
"""Searches for similar filename in input directory. | ||
Args: | ||
select_value (str): Filename to search for. | ||
Returns: | ||
similar_path (str): Path to similar filename. | ||
""" | ||
fov = self.cell_df[self.cell_df["Cell ID"] == self.cell_id_select.value]["fov"].values[0] | ||
in_f_path = os.path.join(self.input_dir, fov) | ||
# search for similar filename in in_f_path | ||
in_f_files = [ | ||
f for f in os.listdir(in_f_path) if os.path.isfile(os.path.join(in_f_path, f)) | ||
] | ||
similar_path = None | ||
for f in in_f_files: | ||
if select_value + "." in f: | ||
similar_path = os.path.join(self.input_dir, fov, f) | ||
return similar_path | ||
|
||
def update_img(self, image_viewer, composite_image): | ||
"""Updates image in viewer by saving it as png and loading it with the viewer widget. | ||
Args: | ||
image_viewer (ipywidgets.Image): Image widget to update. | ||
composite_image (np.array): Composite image to display. | ||
""" | ||
# Convert composite image to bytes and assign it to the output_image widget | ||
with BytesIO() as output_buffer: | ||
io.imsave(output_buffer, composite_image, format="png") | ||
output_buffer.seek(0) | ||
image_viewer.value = output_buffer.read() | ||
|
||
def update_composite(self): | ||
"""Updates composite image in viewer.""" | ||
in_path_dict = { | ||
"red": None, | ||
"green": None, | ||
"blue": None | ||
} | ||
if self.red_select.value: | ||
in_path_dict["red"] = self.search_for_similar(self.red_select.value) | ||
if self.green_select.value: | ||
in_path_dict["green"] = self.search_for_similar(self.green_select.value) | ||
if self.blue_select.value: | ||
in_path_dict["blue"] = self.search_for_similar(self.blue_select.value) | ||
non_none = [p for p in in_path_dict.values() if p] | ||
if not non_none: | ||
return | ||
in_composite_image, seg_boundaries, individual_cell_boundary = self.create_composite_image( | ||
in_path_dict, add_boundaries=self.overlay_checkbox.value | ||
) | ||
in_composite_image = in_composite_image / np.quantile( | ||
in_composite_image, 0.999, axis=(0,1) | ||
) | ||
in_composite_image = np.clip(in_composite_image*255, 0, 255).astype(np.uint8) | ||
if seg_boundaries is not None: | ||
in_composite_image[seg_boundaries] = [75, 75, 75] | ||
in_composite_image[individual_cell_boundary] = [175, 175, 175] | ||
cell_label = self.cell_df[ | ||
self.cell_df["Cell ID"] == self.cell_id_select.value | ||
]["label"].values[0] | ||
seg_image = self.create_instance_image(in_path_dict, cell_label) | ||
seg_image = (seg_image * 255).astype(np.uint8) | ||
if self.context: | ||
h, w = np.where(seg_image == seg_image.max()) | ||
h, w = np.mean(h).astype(np.uint16), np.mean(w).astype(np.uint16) | ||
h_max, w_max = seg_image.shape | ||
h_0, h_1 = np.clip(h-self.context, 0, h_max), np.clip(h+self.context, 0, h_max) | ||
w_0, w_1 = np.clip(w-self.context, 0, w_max), np.clip(w+self.context, 0, w_max) | ||
seg_image = seg_image[h_0:h_1, w_0:w_1] | ||
in_composite_image = in_composite_image[h_0:h_1, w_0:w_1] | ||
# update image viewers | ||
self.update_img(self.input_image, in_composite_image) | ||
self.update_img(self.output_image, seg_image) | ||
|
||
def update_button_click(self, button): | ||
"""Updates composite image in viewer when update button is clicked.""" | ||
self.update_composite() | ||
|
||
def save_annotations_button_click(self, button): | ||
"""Updates composite image in viewer when pixie button is clicked.""" | ||
self.cell_df.loc[ | ||
self.cell_df["Cell ID"] == self.cell_id_select.value, "annotations" | ||
] = self.model_button.value | ||
self.cell_df.to_csv( | ||
os.path.join(self.output_dir, "annotations.csv"), index=False | ||
) | ||
# bump to next cell | ||
current_index = self.cell_id_select.options.index(self.cell_id_select.value) | ||
max_index = len(self.cell_id_select.options) | ||
if current_index + 1 < max_index: | ||
self.cell_id_select.value = self.cell_id_select.options[current_index + 1] | ||
self.update_composite() | ||
|
||
def display(self): | ||
"""Displays viewer.""" | ||
self.cell_id_select_fn(None) | ||
self.layout() | ||
self.update_composite() |
Oops, something went wrong.