-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
106 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
#!/usr/bin/python3 | ||
|
||
import matplotlib.pyplot as plt | ||
import scipy.optimize | ||
import jax.numpy as np | ||
import jax | ||
|
||
# Problem setup: | ||
# | ||
# Start point at 0, port at 1, submarines in the middle | ||
# Submarines travel at unit speed, we travel at speed alpha | ||
# x-axis is horizontal, y-axis is vertical | ||
# | ||
# Layout: | ||
# 0 ----- d ----- 2d ----- ... ----- kd ----- ... ----- Nd ..... 1 | ||
# | ||
|
||
# Number of points: | ||
TIMESTEPS = 100 | ||
|
||
# Number of subs: | ||
N = 10 | ||
|
||
# Derived parameters | ||
d = 1 / (N + 1) | ||
T = d | ||
t = np.linspace(0, T, TIMESTEPS) | ||
dt = t[1] - t[0] | ||
P = np.stack([np.array(list(range(1, N + 1))) * d, np.zeros(N)], axis=-1) | ||
|
||
|
||
def unpack(x): | ||
return np.reshape(x, (TIMESTEPS, 2)) | ||
|
||
|
||
def pack(x): | ||
return np.reshape(x, (2 * TIMESTEPS,)) | ||
|
||
|
||
# Cost: L2 on distances between sequential points | ||
@jax.jit | ||
def C(x): | ||
x = unpack(x) | ||
return np.sum((x[:-1] - x[1:])**2) | ||
J = jax.jacobian(C) | ||
|
||
|
||
# Max speed constraint | ||
@jax.jit | ||
def g_vel(x, alpha): | ||
x = unpack(x) | ||
return (dt * alpha)**2 - np.sum((x[:-1] - x[1:])**2, axis=1) | ||
Jg_vel = lambda alpha: jax.jacobian(lambda x: g_vel(x, alpha)) | ||
c_vel = lambda alpha: {'type': 'ineq', 'fun': lambda x: g_vel(x, alpha), 'jac': Jg_vel(alpha)} | ||
|
||
|
||
# Endpoint constraint (start at (0, 0), end at (1, 0)) | ||
@jax.jit | ||
def g_endpoints(x): | ||
x = unpack(x) | ||
return np.array([np.sum(x[0]**2), np.sum((x[-1] - np.array([1, 0]))**2)]) | ||
Jg_endpoints = jax.jacobian(g_endpoints) | ||
c_endpoints = {'type': 'eq', 'fun': g_endpoints, 'jac': Jg_endpoints} | ||
|
||
|
||
# Non-detection constraint | ||
@jax.jit | ||
def g_sub(x): | ||
x = unpack(x) | ||
np.tile(x, (N, 1, 1)) | ||
return np.reshape(np.sum((P[:, np.newaxis, :] - x)**2, axis=-1) - t**2, (N * TIMESTEPS,)) | ||
Jg_sub = jax.jacobian(g_sub) | ||
c_sub = {'type': 'ineq', 'fun': g_sub, 'jac': Jg_sub} | ||
|
||
|
||
def arclength(x): | ||
x_spline = scipy.interpolate.CubicSpline(t, x[:, 0]) | ||
y_spline = scipy.interpolate.CubicSpline(t, x[:, 1]) | ||
results = scipy.integrate.quad( | ||
lambda t: (x_spline(t, 1)**2 + y_spline(t, 1)**2)**0.5, 0, T) | ||
print(results) | ||
return results[0] | ||
|
||
|
||
def optimize(x0): | ||
result = scipy.optimize.minimize( | ||
C, | ||
pack(x0), | ||
jac=J, | ||
constraints=[c_vel(alpha), c_endpoints, c_sub], | ||
method='SLSQP') | ||
print('Optimized:') | ||
print(result) | ||
x = unpack(result.x) | ||
return x | ||
|
||
|
||
x0 = np.stack([np.linspace(0, 1, TIMESTEPS), | ||
np.ones(TIMESTEPS)], axis=-1) | ||
alpha = N + 1.5 + 1 | ||
x = optimize(x0) | ||
rect_arclength = np.sum(np.sum((x[1:] - x[:-1])**2, axis=1)**0.5) / T | ||
print(rect_arclength) | ||
print(arclength(x) / T) | ||
plt.plot(x[:, 0], x[:, 1]) | ||
plt.show() |