-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add response to JACI review and update figures
- Loading branch information
1 parent
864abf8
commit 1958aff
Showing
43 changed files
with
25,351 additions
and
23,861 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,360 @@ | ||
--- | ||
title: 'P259: Response to reviews' | ||
subtitle: "Dendritic cells (pDC)" | ||
author: "Kim Dill-McFarland, [email protected]" | ||
date: "version `r format(Sys.time(), '%B %d, %Y')`" | ||
output: | ||
pdf_document: | ||
toc: yes | ||
toc_depth: '3' | ||
html_document: | ||
toc: yes | ||
toc_depth: 3 | ||
toc_float: | ||
collapsed: no | ||
editor_options: | ||
chunk_output_type: console | ||
--- | ||
# Background | ||
|
||
Analyses performed in response to reviews for publication in JACI. | ||
|
||
# Setup | ||
Load packages | ||
|
||
```{r message=FALSE, warning=FALSE} | ||
# Data manipulation and figures | ||
library(tidyverse) | ||
library(ggpubr) | ||
library(readxl) | ||
library(patchwork) | ||
#Print pretty tables to Rmd | ||
library(knitr) | ||
library(kableExtra) | ||
``` | ||
|
||
Set seed | ||
|
||
```{r} | ||
set.seed(589) | ||
``` | ||
|
||
Custom functions | ||
|
||
```{r} | ||
#To extract and format p-value from lmFit | ||
source("https://raw.githubusercontent.com/kdillmcfarland/R_bioinformatic_scripts/master/limma.extract.pval.R") | ||
``` | ||
|
||
# Low-quality libraries | ||
|
||
Determine if low-quality libraries removed from analysis are associated with low input RNA. All filtered libraries with low raw sequences and high CV coverage also had low input RNA. | ||
|
||
```{r echo=FALSE, message=FALSE, fig.width=8.5} | ||
#### Data #### | ||
attach("data_clean/P259_pDC_clean.RData") | ||
meta <- read_csv("data_clean/P259_pDC_metadata.csv") | ||
anno <- read_excel("data_raw/P259-2 Final Annotation.xlsx") | ||
dat <- meta %>% | ||
select(libID, total_sequences, median_cv_coverage) %>% | ||
inner_join(select(anno, "library sampleId", "RNA conc (ng/ul)"), | ||
by=c("libID"="library sampleId")) %>% | ||
mutate(`Quality filter` = ifelse(libID %in% dat.pDC.voom$targets$libID, "Pass", "Fail")) | ||
#### Plot #### | ||
plot1 <- dat %>% | ||
ggplot(aes(y=`RNA conc (ng/ul)`, x=total_sequences)) + | ||
geom_point(aes(color=`Quality filter`), size=2) + | ||
theme_classic() + | ||
labs(x = "Raw sequences", y="RNA concentration (ng/ul)") | ||
plot2 <- dat %>% | ||
ggplot(aes(y=`RNA conc (ng/ul)`, x=median_cv_coverage)) + | ||
geom_point(aes(color=`Quality filter`), size=2) + | ||
theme_classic() + | ||
labs(x = "Raw sequences", y="RNA concentration (ng/ul)") | ||
plot1+plot2 | ||
``` | ||
|
||
# Viral load | ||
### Data | ||
|
||
RV sequences were extracted from RNA-seq libraries and quantified using methods similar to human data. Normalized RV counts were calculated as total RV sequences / total non-human sequences * 1E6 | ||
|
||
```{r echo=FALSE, message=FALSE} | ||
dat2 <- read_csv("data_raw/211102_P259-1_P259-2_RhinoViruses_normlized_read_counts.csv") %>% | ||
rename(libID=libid) %>% | ||
#filter libraries in final analysis | ||
filter(libID %in% dat.pDC.voom$targets$libID) %>% | ||
#add metadata | ||
left_join(select(meta, libID, experiment, donorID, IL5, virus, virus.detail)) %>% | ||
mutate(contrast=paste(IL5,virus, sep="_")) %>% | ||
mutate(contrast=factor(contrast, | ||
levels = c("none_none","none_HRV", | ||
"AntiIL5_none","AntiIL5_HRV", | ||
"EOS.supp_none","EOS.supp_HRV"))) | ||
``` | ||
|
||
```{r echo=FALSE, message=FALSE} | ||
# Format for limma | ||
count1 <- dat2 %>% | ||
filter(experiment == "P259_1") %>% | ||
select(libID, RhinoVirusA_normCount) %>% | ||
pivot_longer(-libID) %>% | ||
arrange(libID) %>% | ||
pivot_wider(names_from = libID) %>% | ||
column_to_rownames("name") | ||
meta1 <- dat2 %>% | ||
filter(experiment == "P259_1") %>% | ||
arrange(libID) %>% | ||
droplevels() | ||
count2 <- dat2 %>% | ||
filter(experiment == "P259_2") %>% | ||
select(libID, RhinoVirusA_normCount) %>% | ||
pivot_longer(-libID) %>% | ||
arrange(libID) %>% | ||
pivot_wider(names_from = libID) %>% | ||
column_to_rownames("name") | ||
meta2 <- dat2 %>% | ||
filter(experiment == "P259_2") %>% | ||
arrange(libID) %>% | ||
droplevels() | ||
``` | ||
|
||
### Run limma contrasts model | ||
|
||
In both experiments, viral loads were significantly higher in virus-infected samples and there were no differences between EOS supernatant or AntiIL5 treatment groups. | ||
|
||
```{r echo=FALSE} | ||
# Define model | ||
model_1.contrast<- model.matrix(~ 0 + contrast, data=meta1) | ||
colnames(model_1.contrast) <- c( | ||
"none_none","none_HRV", | ||
"EOS.supp_none","EOS.supp_HRV") | ||
#Block by donor | ||
consensus.corr1 <- duplicateCorrelation( | ||
count1, | ||
model_1.contrast, | ||
block=meta1$donorID)$consensus.correlation | ||
#Fit model | ||
fitQW_1.contrast <- lmFit(count1, | ||
model_1.contrast, | ||
block=meta1$donorID, | ||
correlation=consensus.corr1) | ||
#Get contrasts | ||
contrast.matrix1 <- makeContrasts( | ||
none_HRV-none_none, | ||
EOS.supp_HRV-EOS.supp_none, | ||
EOS.supp_none-none_none, | ||
EOS.supp_HRV-none_HRV, | ||
levels=model_1.contrast) | ||
efitQW_1.contrast <- eBayes(contrasts.fit(fitQW_1.contrast, | ||
contrast.matrix1)) | ||
extract.pval(model=model_1.contrast, | ||
voom.dat=count1, | ||
eFit=efitQW_1.contrast, | ||
name="pval_1.contrast", | ||
summary=FALSE, | ||
contrasts=TRUE, | ||
contrast.mat=contrast.matrix1) | ||
``` | ||
|
||
```{r echo=FALSE} | ||
# Define model | ||
model_2.contrast<- model.matrix(~ 0 + contrast, data=meta2) | ||
colnames(model_2.contrast) <- c( | ||
"none_none","none_HRV", | ||
"AntiIL5_none","AntiIL5_HRV") | ||
#Block by donor | ||
consensus.corr2 <- duplicateCorrelation( | ||
count2, | ||
model_2.contrast, | ||
block=meta2$donorID)$consensus.correlation | ||
#Fit model | ||
fitQW_2.contrast <- lmFit(count2, | ||
model_2.contrast, | ||
block=meta2$donorID, | ||
correlation=consensus.corr2) | ||
#Get contrasts | ||
contrast.matrix2 <- makeContrasts( | ||
none_HRV-none_none, | ||
AntiIL5_HRV-AntiIL5_none, | ||
AntiIL5_none-none_none, | ||
AntiIL5_HRV-none_HRV, | ||
levels=model_2.contrast) | ||
efitQW_2.contrast <- eBayes(contrasts.fit(fitQW_2.contrast, | ||
contrast.matrix2)) | ||
extract.pval(model=model_2.contrast, | ||
voom.dat=count2, | ||
eFit=efitQW_2.contrast, | ||
name="pval_2.contrast", | ||
summary=FALSE, | ||
contrasts=TRUE, | ||
contrast.mat=contrast.matrix2) | ||
``` | ||
|
||
```{r echo=FALSE} | ||
pval_1.contrast %>% | ||
select(group, logFC, adj.P.Val) %>% | ||
kable(align=c("l","c","c"), digits=4, caption="P259_1", | ||
col.names = c("Variable","Fold change", "FDR")) %>% | ||
kable_styling(latex_options="HOLD_position", full_width = FALSE) | ||
pval_2.contrast %>% | ||
select(group, logFC, adj.P.Val) %>% | ||
kable(align=c("l","c","c"), digits=4, caption="P259_2", | ||
col.names = c("Variable","Fold change", "FDR")) %>% | ||
kable_styling(latex_options="HOLD_position", full_width = FALSE) | ||
``` | ||
|
||
```{r echo=FALSE} | ||
#save | ||
write_csv(pval_1.contrast, file="review_response/RV.EOS.model.csv") | ||
write_csv(pval_2.contrast, file="review_response/RV.antiIL5.model.csv") | ||
``` | ||
|
||
### Plot | ||
|
||
```{r echo=FALSE, fig.width=8.5, message=FALSE, warning=FALSE} | ||
#### Format pval data #### | ||
#Pvals for eos experiment | ||
GOI.p1 <- pval_1.contrast %>% | ||
mutate(dataset="P259.1") | ||
#Pvals for aniti-IL5 experiment | ||
GOI.p <- pval_2.contrast%>% | ||
mutate(dataset="P259.2") %>% | ||
#Combine with eos data | ||
bind_rows(GOI.p1) %>% | ||
#Make symbols for plots | ||
mutate(symbol = ifelse(P.Value <= 0.001,"***", | ||
ifelse(P.Value <= 0.01, "**", | ||
ifelse(P.Value <= 0.05, "*", NA)))) %>% | ||
filter(!is.na(symbol)) %>% | ||
#Match group labels to those in plots | ||
mutate(group.long = paste(dataset, group, sep="_"), | ||
group1 = recode_factor(factor(group.long), | ||
"P259.2_none_HRV - none_none"='"-\n-"', | ||
"P259.2_AntiIL5_HRV - AntiIL5_none"='"-\n+"', | ||
"P259.2_AntiIL5_none - none_none"='"-\n-"', | ||
"P259.2_AntiIL5_HRV - none_HRV"='"+\n-"', | ||
"P259.1_none_HRV - none_none"='"RV -\nEOS sup -"', | ||
"P259.1_EOS.supp_HRV - EOS.supp_none"='"-\n+"', | ||
"P259.1_EOS.supp_none - none_none"='"RV -\nEOS sup -"', | ||
"P259.1_EOS.supp_HRV - none_HRV"='"+\n-"'), | ||
group2 = recode_factor(factor(group.long), | ||
"P259.2_none_HRV - none_none"='"+\n-"', | ||
"P259.2_AntiIL5_HRV - AntiIL5_none"='"+ RV\n+ Anti-IL-5/5R"*alpha', | ||
"P259.2_AntiIL5_none - none_none"='"-\n+"', | ||
"P259.2_AntiIL5_HRV - none_HRV"='"+ RV\n+ Anti-IL-5/5R"*alpha', | ||
"P259.1_none_HRV - none_none"='"+\n-"', | ||
"P259.1_EOS.supp_HRV - EOS.supp_none"='"+\n+"', | ||
"P259.1_EOS.supp_none - none_none"='"-\n+"', | ||
"P259.1_EOS.supp_HRV - none_HRV"='"+\n+"'), | ||
facet.lab = recode_factor(factor(dataset), | ||
"P259.1" = '"EOS sup"', | ||
"P259.2" = '"Anti-IL-5/5R"*alpha')) %>% | ||
dplyr::select(facet.lab, group1, group2, symbol) | ||
#Add y location for pval based on max expression in plot | ||
GOI.pe <- dat2 %>% | ||
#Max expression per gene and experiment | ||
group_by(experiment) %>% | ||
summarise(max.e = max(RhinoVirusA_normCount, na.rm=TRUE)) %>% | ||
ungroup() %>% | ||
mutate(facet.lab = experiment, | ||
facet.lab = recode_factor(factor(facet.lab), | ||
"P259_1" = '"EOS sup"', | ||
"P259_2" = '"Anti-IL-5/5R"*alpha')) %>% | ||
#Add to pval data | ||
right_join(GOI.p) %>% | ||
arrange(experiment, group1, group2) | ||
#first entry per gene | ||
#Set y position to 1 | ||
first <- GOI.pe %>% | ||
group_by(experiment) %>% | ||
slice(1) %>% | ||
mutate(y.position1 = 1) | ||
#Add first position data back and fill in remaining | ||
GOI.pey <- GOI.pe %>% | ||
full_join(first) %>% | ||
#Fill in positions 2 - N | ||
group_by(experiment, facet.lab) %>% | ||
mutate(y.position2 = lag(y.position1)+1, | ||
y.position3 = lag(y.position2)+1, | ||
y.position4 = lag(y.position3)+1) %>% | ||
#Collapse positions into 1 column | ||
mutate(y.position = ifelse(!is.na(y.position1),y.position1, | ||
ifelse(!is.na(y.position2),y.position2, | ||
ifelse(!is.na(y.position3),y.position3, | ||
ifelse(!is.na(y.position4),y.position4,NA))))) %>% | ||
#Scale to max expression | ||
mutate(y.position = max.e+y.position*5E3) %>% | ||
ungroup() | ||
#plot | ||
plot3 <- dat2 %>% | ||
mutate(x.lab=paste(experiment, virus.detail, IL5, sep="_"), | ||
x.lab=gsub("oldH|newH", "", x.lab), | ||
x.lab=recode_factor(factor(x.lab), | ||
"P259_1_none_none"='"RV -\nEOS sup -"', | ||
"P259_2_none_none"='"-\n-"', | ||
"P259_1_none_EOS.supp"='"-\n+"', | ||
"P259_2_none_AntiIL5"='"-\n+"', | ||
"P259_1_RV_none"='"+\n-"', | ||
"P259_2_RV_none"='"+\n-"', | ||
"P259_1_RV_EOS.supp"='"+\n+"', | ||
"P259_2_RV_AntiIL5"='"+ RV\n+ Anti-IL-5/5R"*alpha')) %>% | ||
mutate(facet.lab = experiment, | ||
facet.lab = recode_factor(factor(facet.lab), | ||
"P259_1" = '"EOS sup"', | ||
"P259_2" = '"Anti-IL-5/5R"*alpha')) %>% | ||
arrange(facet.lab) %>% | ||
ggplot(aes(x=x.lab, y=RhinoVirusA_normCount, color=donorID)) + | ||
geom_jitter(width=0.1, height=0) + | ||
stat_summary(fun.data=mean_sdl, | ||
fun.args = list(mult=1), | ||
geom="errorbar", color="black", width=0.25) + | ||
stat_summary(fun=mean, geom="errorbar", | ||
aes(ymax=..y.., ymin=..y..), | ||
color="black", width=0.5) + | ||
facet_grid(~facet.lab, scales="free", | ||
labeller = labeller(facet.lab=label_parsed)) + | ||
#Add pval | ||
stat_pvalue_manual(data=GOI.pey, | ||
label="symbol", xmin="group1", xmax="group2") + | ||
# #Beautify | ||
theme_bw() + | ||
labs(x="", y="Normalized RV expression") + | ||
theme(legend.position = "none", | ||
panel.grid.major.y = element_blank(), | ||
panel.grid.minor.y = element_blank(), | ||
strip.background =element_rect(fill="white"), | ||
axis.text.x=element_text(hjust=0.95,vjust=-0.5), | ||
plot.margin = margin(0.2,0.2,0.2,0.2,"cm")) + | ||
scale_x_discrete(labels = ggplot2:::parse_safe) | ||
plot3 | ||
``` | ||
|
||
# R session | ||
|
||
```{r} | ||
sessionInfo() | ||
``` | ||
|
||
*** |
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file renamed
BIN
+7.88 KB
publication/fig/FigE2.GSEA.term.venn.pdf → publication/fig/FigE4.GSEA.term.venn.pdf
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Oops, something went wrong.