Pytorch implementation of SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations.
- Pytorch > 0.4
- Python 3.5
- PIL
- Matplotlib
- Numpy
# clone this repo
git clone https://github.com/alldbi/SmoothFool.git
cd SmoothFool
# Generating smooth adversarial examples:
python smoothfool.py \
--net resnet101 \
--img "path to the input image" \
--type "type of smoothing which can be gaussian, linear, or uniform." \
--sigma "parameter of the smoothing function, for gaussian is the standard deviation, for linear and uniform is the size of kernel" \
--smoothclip "whether using smoothclip or conventional clip" \
If you use the code or methodology for your research, please cite the paper: SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations