Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add mechanism of save/load checkpoint #123

Merged
merged 4 commits into from
Jan 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 52 additions & 5 deletions examples/igbh/dist_train_rgnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@

from mlperf_logging_utils import get_mlperf_logger, submission_info
from torch.nn.parallel import DistributedDataParallel
from utilities import create_ckpt_folder
from rgnn import RGNN

mllogger = get_mlperf_logger(path=osp.dirname(osp.abspath(__file__)))
Expand Down Expand Up @@ -93,10 +94,16 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
val_loader_master_port,
with_gpu, trim_to_layer, use_fp16,
edge_dir, rpc_timeout,
validation_acc, validation_frac_within_epoch, evaluate_on_epoch_end):

validation_acc, validation_frac_within_epoch, evaluate_on_epoch_end,
checkpoint_on_epoch_end, ckpt_steps, ckpt_path):

world_size=num_nodes*num_training_procs
rank=node_rank*num_training_procs+local_proc_rank
if rank == 0:
mllogger.start(key=mllog_constants.RUN_START)
if ckpt_steps > 0:
ckpt_dir = create_ckpt_folder(base_dir=osp.dirname(osp.abspath(__file__)))

glt.utils.common.seed_everything(random_seed)

# Initialize graphlearn_torch distributed worker group context.
Expand Down Expand Up @@ -177,6 +184,15 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
)
)

# Load checkpoint
ckpt = None
if ckpt_path is not None:
try:
ckpt = torch.load(ckpt_path)
except FileNotFoundError as e:
print(f"Checkpoint file not found: {e}")
return -1

# Define model and optimizer.
if with_gpu:
torch.cuda.set_device(current_device)
Expand All @@ -190,6 +206,8 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
heads=num_heads,
node_type='paper',
with_trim=trim_to_layer).to(current_device)
if ckpt is not None:
model.load_state_dict(ckpt['model_state_dict'])
model = DistributedDataParallel(model,
device_ids=[current_device.index] if with_gpu else None,
find_unused_parameters=True)
Expand All @@ -206,6 +224,8 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,

loss_fcn = torch.nn.CrossEntropyLoss().to(current_device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if ckpt is not None:
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
batch_num = (len(train_idx) + train_batch_size - 1) // train_batch_size
validation_freq = int(batch_num * validation_frac_within_epoch)
is_success = False
Expand Down Expand Up @@ -246,6 +266,16 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
if with_gpu
else 0
)
#checkpoint
if ckpt_steps > 0 and idx % ckpt_steps == 0:
if with_gpu:
torch.cuda.synchronize()
torch.distributed.barrier()
if rank == 0:
epoch_num = epoch + idx / batch_num
glt.utils.common.save_ckpt(idx + epoch * batch_num,
ckpt_dir, model.module, optimizer, epoch_num)
torch.distributed.barrier()
# evaluate
if idx % validation_freq == 0:
if with_gpu:
Expand All @@ -268,6 +298,14 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
torch.cuda.synchronize()
torch.distributed.barrier()

#checkpoint at the end of epoch
if checkpoint_on_epoch_end:
if rank == 0:
epoch_num = epoch + 1
glt.utils.common.save_ckpt(idx + epoch * batch_num,
ckpt_dir, model.module, optimizer, epoch_num)
torch.distributed.barrier()

# evaluate at the end of epoch
if evaluate_on_epoch_end and not is_success:
epoch_num = epoch + 1
Expand Down Expand Up @@ -329,7 +367,7 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
parser.add_argument('--val_batch_size', type=int, default=512)
parser.add_argument('--hidden_channels', type=int, default=128)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--epochs', type=int, default=2)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--num_heads', type=int, default=4)
parser.add_argument('--random_seed', type=int, default=42)
Expand Down Expand Up @@ -371,7 +409,13 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
parser.add_argument("--validation_acc", type=float, default=0.72,
help="Validation accuracy threshold to stop training once reached.")
parser.add_argument("--evaluate_on_epoch_end", action="store_true",
help="Evaluate using validation set on each epoch end.")
help="Evaluate using validation set on each epoch end."),
parser.add_argument("--checkpoint_on_epoch_end", action="store_true",
help="Save checkpoint on each epoch end."),
parser.add_argument('--ckpt_steps', type=int, default=-1,
help="Save checkpoint every n steps. Default is -1, which means no checkpoint is saved.")
parser.add_argument('--ckpt_path', type=str, default=None,
help="Path to load checkpoint from. Default is None.")
args = parser.parse_args()
assert args.layout in ['COO', 'CSC', 'CSR']

Expand Down Expand Up @@ -433,7 +477,10 @@ def run_training_proc(local_proc_rank, num_nodes, node_rank, num_training_procs,
args.rpc_timeout,
args.validation_acc,
args.validation_frac_within_epoch,
args.evaluate_on_epoch_end),
args.evaluate_on_epoch_end,
args.checkpoint_on_epoch_end,
args.ckpt_steps,
args.ckpt_path),
nprocs=args.num_training_procs,
join=True
)
4 changes: 2 additions & 2 deletions examples/igbh/split_seeds.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ def __init__(self,
dataset_size='tiny',
use_label_2K=True,
random_seed=42,
validation_frac=0.05):
validation_frac=0.01):
self.path = path
self.dataset_size = dataset_size
self.use_label_2K = use_label_2K
Expand Down Expand Up @@ -49,7 +49,7 @@ def process(self):
parser.add_argument("--random_seed", type=int, default='42')
parser.add_argument('--num_classes', type=int, default=2983,
choices=[19, 2983], help='number of classes')
parser.add_argument("--validation_frac", type=float, default=0.05,
parser.add_argument("--validation_frac", type=float, default=0.01,
help="Fraction of labeled vertices to be used for validation.")

args = parser.parse_args()
Expand Down
53 changes: 47 additions & 6 deletions examples/igbh/train_rgnn_multi_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@

from dataset import IGBHeteroDataset
from mlperf_logging_utils import get_mlperf_logger, submission_info
from utilities import create_ckpt_folder
from rgnn import RGNN

warnings.filterwarnings("ignore")
Expand Down Expand Up @@ -80,9 +81,11 @@ def run_training_proc(rank, world_size,
hidden_channels, num_classes, num_layers, model_type, num_heads, fan_out,
epochs, train_batch_size, val_batch_size, learning_rate, random_seed, dataset,
train_idx, val_idx, with_gpu, validation_acc, validation_frac_within_epoch,
evaluate_on_epoch_end):
evaluate_on_epoch_end, checkpoint_on_epoch_end, ckpt_steps, ckpt_path):
if rank == 0:
mllogger.start(key=mllog_constants.RUN_START)
if ckpt_steps > 0:
ckpt_dir = create_ckpt_folder(base_dir=osp.dirname(osp.abspath(__file__)))
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=rank, world_size=world_size)
Expand Down Expand Up @@ -116,7 +119,15 @@ def run_training_proc(rank, world_size,
device=current_device,
seed=random_seed
)

# Load checkpoint
ckpt = None
if ckpt_path is not None:
try:
ckpt = torch.load(ckpt_path)
except FileNotFoundError as e:
print(f"Checkpoint file not found: {e}")
return -1

# Define model and optimizer.
model = RGNN(dataset.get_edge_types(),
dataset.node_features['paper'].shape[1],
Expand All @@ -127,6 +138,8 @@ def run_training_proc(rank, world_size,
model=model_type,
heads=num_heads,
node_type='paper').to(current_device)
if ckpt is not None:
model.load_state_dict(ckpt['model_state_dict'])
model = DistributedDataParallel(model,
device_ids=[current_device.index] if with_gpu else None,
find_unused_parameters=True)
Expand All @@ -143,6 +156,9 @@ def run_training_proc(rank, world_size,

loss_fcn = torch.nn.CrossEntropyLoss().to(current_device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if ckpt is not None:
optimizer.load_state_dict(ckpt['optimizer_state_dict'])

batch_num = (len(train_idx) + train_batch_size - 1) // train_batch_size
validation_freq = int(batch_num * validation_frac_within_epoch)
is_success = False
Expand Down Expand Up @@ -179,6 +195,16 @@ def run_training_proc(rank, world_size,
if with_gpu
else 0
)
#checkpoint
if ckpt_steps > 0 and idx % ckpt_steps == 0:
if with_gpu:
torch.cuda.synchronize()
dist.barrier()
if rank == 0:
epoch_num = epoch + idx / batch_num
glt.utils.common.save_ckpt(idx + epoch * batch_num,
ckpt_dir, model.module, optimizer, epoch_num)
dist.barrier()
# evaluate
if idx % validation_freq == 0:
if with_gpu:
Expand All @@ -197,6 +223,14 @@ def run_training_proc(rank, world_size,
torch.cuda.synchronize()
dist.barrier()

#checkpoint at the end of epoch
if checkpoint_on_epoch_end:
if rank == 0:
epoch_num = epoch + 1
glt.utils.common.save_ckpt(idx + epoch * batch_num,
ckpt_dir, model.module, optimizer, epoch_num)
dist.barrier()

# evaluate at the end of epoch
if evaluate_on_epoch_end and not is_success:
epoch_num = epoch + 1
Expand Down Expand Up @@ -260,9 +294,9 @@ def run_training_proc(rank, world_size,
parser.add_argument('--train_batch_size', type=int, default=1024)
parser.add_argument('--val_batch_size', type=int, default=1024)
parser.add_argument('--hidden_channels', type=int, default=128)
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=3)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--epochs', type=int, default=2)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--num_heads', type=int, default=4)
parser.add_argument('--random_seed', type=int, default=42)
parser.add_argument("--cpu_mode", action="store_true",
Expand All @@ -280,6 +314,12 @@ def run_training_proc(rank, world_size,
help="Validation accuracy threshold to stop training once reached.")
parser.add_argument("--evaluate_on_epoch_end", action="store_true",
help="Evaluate using validation set on each epoch end.")
parser.add_argument("--checkpoint_on_epoch_end", action="store_true",
help="Save checkpoint on each epoch end.")
parser.add_argument('--ckpt_steps', type=int, default=-1,
help="Save checkpoint every n steps. Default is -1, which means no checkpoint is saved.")
parser.add_argument('--ckpt_path', type=str, default=None,
help="Path to load checkpoint from. Default is None.")
args = parser.parse_args()
args.with_gpu = (not args.cpu_mode) and torch.cuda.is_available()
assert args.layout in ['COO', 'CSC', 'CSR']
Expand Down Expand Up @@ -324,7 +364,8 @@ def run_training_proc(rank, world_size,
args.learning_rate, args.random_seed,
glt_dataset, train_idx, val_idx, args.with_gpu,
args.validation_acc, args.validation_frac_within_epoch,
args.evaluate_on_epoch_end),
args.evaluate_on_epoch_end, args.checkpoint_on_epoch_end,
args.ckpt_steps, args.ckpt_path),
nprocs=world_size,
join=True
)
12 changes: 12 additions & 0 deletions examples/igbh/utilities.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
import os
import time
import torch

def create_ckpt_folder(base_dir, prefix="ckpt"):
timestamp = time.strftime("%Y%m%d-%H%M%S")
folder_name = f"{prefix}_{timestamp}" if prefix else timestamp
full_path = os.path.join(base_dir, folder_name)
if not os.path.exists(full_path):
os.makedirs(full_path)
return full_path

59 changes: 59 additions & 0 deletions graphlearn_torch/python/utils/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,3 +165,62 @@ def load_and_concatenate_tensors(filename, device):
combined_tensor[start_idx:end_idx] = tensor.to(device)
start_idx = end_idx
return combined_tensor

def save_ckpt(
ckpt_seq: int,
ckpt_dir: str,
model: torch.nn.Module,
optimizer: Optional[torch.optim.Optimizer] = None,
epoch: float = 0,
):
"""
Saves a checkpoint of the model's state.

Parameters:
ckpt_seq (int): The sequence number of the checkpoint.
ckpt_dir (str): The directory where the checkpoint will be saved.
model (torch.nn.Module): The model to be saved.
optimizer (Optional[torch.optim.Optimizer]): The optimizer, if any.
epoch (float): The current epoch. Default is 0.
"""
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
ckpt_path = os.path.join(ckpt_dir, f"model_seq_{ckpt_seq}.ckpt")

ckpt = {
'seq': ckpt_seq,
'epoch': epoch,
'model_state_dict': model.state_dict()
}
if optimizer:
ckpt['optimizer_state_dict'] = optimizer.state_dict()

torch.save(ckpt, ckpt_path)

def load_ckpt(
ckpt_seq: int,
ckpt_dir: str,
model: torch.nn.Module,
optimizer: Optional[torch.optim.Optimizer] = None,
) -> float:
"""
Loads a checkpoint of the model's state, returns the epoch of the checkpoint.

Parameters:
ckpt_seq (int): The sequence number of the checkpoint.
ckpt_dir (str): The directory where the checkpoint will be saved.
model (torch.nn.Module): The model to be saved.
optimizer (Optional[torch.optim.Optimizer]): The optimizer, if any.
"""

ckpt_path = os.path.join(ckpt_dir, f"model_seq_{ckpt_seq}.ckpt")
try:
ckpt = torch.load(ckpt_path)
except FileNotFoundError:
return -1

model.load_state_dict(ckpt['model_state_dict'])
epoch = ckpt.get('epoch')
if optimizer:
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
return epoch
Loading