Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Problems with crit dis #161

Merged
merged 7 commits into from
Sep 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/GKLS_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def SolveSingleGKLS():
solver.add_listener(spl)

# Решение задачи
sol = solver.solve()
solver.solve()


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion examples/GKLS_timeout_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def SolveSingleGKLS():
solver.add_listener(cfol)

# Решение задачи
sol = solver.solve()
solver.solve()


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion examples/Grishagin_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@

# Добавляем построение 3D визуализации после решения задачи
spl = StaticPainterNDListener("grishagin.png", "output", vars_indxs=[0, 1], mode="lines layers",
calc="objective function")
calc="objective function")
solver.add_listener(spl)

# Решение задачи
Expand Down
1 change: 0 additions & 1 deletion examples/RastriginInt_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,4 +24,3 @@

# Запуск решения задачи
sol = solver.solve()

1 change: 0 additions & 1 deletion examples/Rastrigin_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,4 +27,3 @@
solver.add_listener(spl)
# Запуск решения задачи
sol = solver.solve()

81 changes: 81 additions & 0 deletions problems/Floudas.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import numpy as np
from iOpt.trial import Point
from iOpt.trial import FunctionValue
from iOpt.trial import FunctionType
from iOpt.trial import Trial
from iOpt.problem import Problem
import math


class Floudas(Problem):
"""

"""

def __init__(self):
"""
Конструктор класса Floudas problem.
"""
super(Floudas, self).__init__()
self.name = "Floudas"
self.dimension = 3
self.number_of_float_variables = 2
self.number_of_discrete_variables = 1
self.number_of_objectives = 1
self.number_of_constraints = 3

self.float_variable_names = np.ndarray(shape=(self.number_of_float_variables,), dtype=object)
for i in range(self.number_of_float_variables):
self.float_variable_names[i] = str(i)

self.discrete_variable_names = np.ndarray(shape=(self.number_of_discrete_variables,), dtype=object)
for i in range(self.number_of_discrete_variables):
self.discrete_variable_names[i] = str(i)

self.lower_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.lower_bound_of_float_variables[0] = 0.2
self.lower_bound_of_float_variables[1] = -2.22554
self.upper_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.upper_bound_of_float_variables[0] = 1
self.upper_bound_of_float_variables[1] = -1

self.discrete_variable_values = [["0", "1"] for i in range(self.number_of_discrete_variables)]

self.known_optimum = np.ndarray(shape=(1,), dtype=Trial)

pointfv = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
pointfv = [0.499609, -1.305787]

pointdv = np.ndarray(shape=(self.number_of_discrete_variables,), dtype=object)
pointdv[0] = "1"

KOpoint = Point(pointfv, pointdv)
KOfunV = np.ndarray(shape=(1,), dtype=FunctionValue)
KOfunV[0] = FunctionValue()
KOfunV[0].value = 0.100001
self.known_optimum[0] = Trial(KOpoint, KOfunV)


def calculate(self, point: Point, function_value: FunctionValue) -> FunctionValue:
"""
Вычисление значения выбранной функции в заданной точке.

:param point: координаты точки испытания, в которой будет вычислено значение функции
:param function_value: объект определяющий номер функции в задаче и хранящий значение функции
:return: Вычисленное значение функции в точке point
"""
result: np.double = 0
x = point.float_variables
b = point.discrete_variables

if function_value.type == FunctionType.OBJECTIV:
result = np.double(-0.7 * int(b[0]) + 5.0 * (x[0] - 0.5) * (x[0] - 0.5) + 0.8)
elif function_value.functionID == 0: # constraint 1
result = np.double(-math.exp(x[0] - 0.2) - x[1])
elif function_value.functionID == 1: # constraint 2
result = np.double(x[1] + 1.1 * int(b[0]) - 1)
elif function_value.functionID == 2: # constraint 3
result = np.double(x[0] - 1.2 * int(b[0]) - 0.2)

function_value.value = result
return function_value
1 change: 0 additions & 1 deletion problems/GKLS_function/gkls_function.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import numpy as np
import math
from problems.GKLS_function.gkls_random import GKLSRandomGenerator


Expand Down
80 changes: 80 additions & 0 deletions problems/Pern.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
import numpy as np
from iOpt.trial import Point
from iOpt.trial import FunctionValue
from iOpt.trial import FunctionType
from iOpt.trial import Trial
from iOpt.problem import Problem
import math


class Pern(Problem):
"""

"""

def __init__(self):
"""
Конструктор класса Pern problem.
"""
super(Pern, self).__init__()
self.name = "Pern"
self.dimension = 2
self.number_of_float_variables = 1
self.number_of_discrete_variables = 1
self.number_of_objectives = 1
self.number_of_constraints = 3

self.float_variable_names = np.ndarray(shape=(self.number_of_float_variables,), dtype=object)
for i in range(self.number_of_float_variables):
self.float_variable_names[i] = str(i)

self.discrete_variable_names = np.ndarray(shape=(self.number_of_discrete_variables,), dtype=object)
for i in range(self.number_of_discrete_variables):
self.discrete_variable_names[i] = str(i)

self.lower_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.lower_bound_of_float_variables[0] = 1
self.upper_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.upper_bound_of_float_variables[0] = 10

self.discrete_variable_values = [[[str(i) for i in range(1, 7)]] for i in range(self.number_of_discrete_variables)]

self.known_optimum = np.ndarray(shape=(1,), dtype=Trial)

pointfv = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
pointfv[0] = 4

pointdv = np.ndarray(shape=(self.number_of_discrete_variables,), dtype=object)
pointdv[0] = "1"

KOpoint = Point(pointfv, pointdv)
KOfunV = np.ndarray(shape=(1,), dtype=FunctionValue)
KOfunV[0] = FunctionValue()
KOfunV[0].value = -17
self.known_optimum[0] = Trial(KOpoint, KOfunV)


def calculate(self, point: Point, function_value: FunctionValue) -> FunctionValue:
"""
Вычисление значения выбранной функции в заданной точке.

:param point: координаты точки испытания, в которой будет вычислено значение функции
:param function_value: объект определяющий номер функции в задаче и хранящий значение функции
:return: Вычисленное значение функции в точке point
"""
result: np.double = 0
x = point.float_variables[0]
b = int(point.discrete_variables[0])

if function_value.type == FunctionType.OBJECTIV:
result = np.double(3.0 * b - 5.0 * x)
elif function_value.functionID == 0: # constraint 1
result = np.double(2.0 * b * b - 2.0 * math.sqrt(b) - 2.0 * math.sqrt(x) * b * b
+ 11.0 * b + 8 * x - 39.0)
elif function_value.functionID == 1: # constraint 2
result = np.double(-b + x - 3.0)
elif function_value.functionID == 2: # constraint 3
result = np.double(2.0 * b + 3 * x - 24.0)

function_value.value = result
return function_value
95 changes: 95 additions & 0 deletions problems/Synthes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import numpy as np
from iOpt.trial import Point
from iOpt.trial import FunctionValue
from iOpt.trial import FunctionType
from iOpt.trial import Trial
from iOpt.problem import Problem
import math


class Synthes(Problem):
"""

"""

def __init__(self):
"""
Конструктор класса Synthes problem.
"""
super(Synthes, self).__init__()
self.name = "Synthes"
self.dimension = 6
self.number_of_float_variables = 3
self.number_of_discrete_variables = 3
self.number_of_objectives = 1
self.number_of_constraints = 6

self.float_variable_names = np.ndarray(shape=(self.number_of_float_variables,), dtype=object)
for i in range(self.number_of_float_variables):
self.float_variable_names[i] = str(i)

self.discrete_variable_names = np.ndarray(shape=(self.number_of_discrete_variables,), dtype=object)
for i in range(self.number_of_discrete_variables):
self.discrete_variable_names[i] = str(i)

self.lower_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.lower_bound_of_float_variables.fill(0)
self.upper_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.upper_bound_of_float_variables.fill(3)

self.discrete_variable_values = [[[str(i) for i in range(0, 6)]] for i in range(self.number_of_discrete_variables)]

self.known_optimum = np.ndarray(shape=(1,), dtype=Trial)
# UNDEFINED


def calculate(self, point: Point, function_value: FunctionValue) -> FunctionValue:
"""
Вычисление значения выбранной функции в заданной точке.

:param point: координаты точки испытания, в которой будет вычислено значение функции
:param function_value: объект определяющий номер функции в задаче и хранящий значение функции
:return: Вычисленное значение функции в точке point
"""
result: np.double = 0
x = point.float_variables
b = [int(x) for x in point.discrete_variables]

if function_value.type == FunctionType.OBJECTIV:
result = np.double(5.0 * b[0] + 6.0 * b[1] + 8.0 * b[2] + 10.0 * x[0]
- 7.0 * x[2] - 18.0 * math.log(x[1] + 1.0)
- 19.2 * math.log(x[0] - x[1] + 1.0) + 10.0)
elif function_value.functionID == 0: # constraint 1
result = np.double(b[0] + b[1] - 1.1)
elif function_value.functionID == 1: # constraint 2
if ((x[0] - x[1] + 1.0) != 0):
try:
result = np.double(-(math.log(x[1] + 1.0) + 1.2*
math.log(x[0] - x[1] + 1.0) - x[2]- 2 * b[2] + 2.0))
except ValueError:
print("CalculateFuncs Error!!!")
result = np.NaN
pass # do nothing!
else:
result = 1
elif function_value.functionID == 2: # constraint 3
if ((x[0] - x[1] + 1.0) != 0):
try:
result = np.double(-(math.log(x[1] + 1.0) + 1.2*
math.log(x[0] - x[1] + 1.0) - x[2]- 2 * b[2] + 2.0))
except ValueError:
print("CalculateFuncs Error!!!")
result = np.NaN
pass # do nothing!

else:
result = 1
elif function_value.functionID == 3: # constraint 4
result = np.double(x[1] - x[0])
elif function_value.functionID == 4: # constraint 5
result = np.double(x[1] - 2.0 * b[0])
elif function_value.functionID == 5: # constraint 6
result = np.double(x[0] - x[1] - 2.0 * b[1])

function_value.value = result
return function_value
94 changes: 94 additions & 0 deletions problems/Yuan.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
import numpy as np
from iOpt.trial import Point
from iOpt.trial import FunctionValue
from iOpt.trial import FunctionType
from iOpt.trial import Trial
from iOpt.problem import Problem
import math


class Yuan(Problem):
"""

"""

def __init__(self):
"""
Конструктор класса Yuan problem.
"""
super(Yuan, self).__init__()
self.name = "Yuan"
self.dimension = 7
self.number_of_float_variables = 3
self.number_of_discrete_variables = 4
self.number_of_objectives = 1
self.number_of_constraints = 9

self.float_variable_names = np.ndarray(shape=(self.number_of_float_variables,), dtype=object)
for i in range(self.number_of_float_variables):
self.float_variable_names[i] = str(i)

self.discrete_variable_names = np.ndarray(shape=(self.number_of_discrete_variables,), dtype=object)
for i in range(self.number_of_discrete_variables):
self.discrete_variable_names[i] = str(i)

self.lower_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.lower_bound_of_float_variables.fill(0)
self.upper_bound_of_float_variables = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
self.upper_bound_of_float_variables.fill(3)

self.discrete_variable_values = [["0", "1"] for i in range(self.number_of_discrete_variables)]

self.known_optimum = np.ndarray(shape=(1,), dtype=Trial)

pointfv = np.ndarray(shape=(self.number_of_float_variables,), dtype=np.double)
pointfv = [0.2, 0.8, 1.908]

pointdv = np.ndarray(shape=(self.number_of_discrete_variables,), dtype=object)
pointdv = ["1", "1", "0", "1"]

KOpoint = Point(pointfv, pointdv)
KOfunV = np.ndarray(shape=(1,), dtype=FunctionValue)
KOfunV[0] = FunctionValue()
KOfunV[0].value = 4.5796
self.known_optimum[0] = Trial(KOpoint, KOfunV)


def calculate(self, point: Point, function_value: FunctionValue) -> FunctionValue:
"""
Вычисление значения выбранной функции в заданной точке.

:param point: координаты точки испытания, в которой будет вычислено значение функции
:param function_value: объект определяющий номер функции в задаче и хранящий значение функции
:return: Вычисленное значение функции в точке point
"""
result: np.double = 0
x = point.float_variables
b = [int(x) for x in point.discrete_variables]

if function_value.type == FunctionType.OBJECTIV:
result = np.double((b[0] - 1.0) * (b[0] - 1.0) + (b[1] - 2.0) * (b[1] - 2.0) +
(b[2] - 1.0) * (b[2] - 1.0) - math.log(b[3] + 1.0) +
(x[0] - 1.0) * (x[0] - 1.0) + (x[1] - 2.0) * (x[1] - 2.0) +
(x[2] - 3.0) * (x[2] - 3.0))
elif function_value.functionID == 0: # constraint 1
result = np.double(b[0] + b[1] + b[2] + x[0] + x[1] + x[2] - 5.0)
elif function_value.functionID == 1: # constraint 2
result = np.double(b[2] * b[2] + x[0] * x[0] + x[1] * x[1] + x[2] * x[2] - 5.5)
elif function_value.functionID == 2: # constraint 3
result = np.double(b[0] + x[0] - 1.2)
elif function_value.functionID == 3: # constraint 4
result = np.double(b[1] + x[1] - 1.8)
elif function_value.functionID == 4: # constraint 5
result = np.double(b[2] + x[2] - 2.5)
elif function_value.functionID == 5: # constraint 6
result = np.double(b[3] + x[0] - 1.2)
elif function_value.functionID == 6: # constraint 7
result = np.double(b[1] * b[1] + x[1] * x[1] - 1.64)
elif function_value.functionID == 7: # constraint 8
result = np.double(b[2] * b[2] + x[2] * x[2] - 4.25)
elif function_value.functionID == 8: # constraint 9
result = np.double(b[1] * b[1] + x[2] * x[2] - 4.64)

function_value.value = result
return function_value
Loading