-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
346 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,346 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"id": "5573a4bc-5463-40d8-a75a-6aaef8fcd06c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"from torch import nn\n", | ||
"from transformers import BertModel, BertTokenizer\n", | ||
"\n", | ||
"from mlguess.torch.class_losses import relu_evidence" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "516cbd75-5da1-435b-b995-320004fa63ca", | ||
"metadata": {}, | ||
"source": [ | ||
"### Example usage for K-class problem" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 41, | ||
"id": "b2c4e448-b5ec-4355-bf8f-5cc300cc8bd4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class DNABert(nn.Module):\n", | ||
" def __init__(self, n_classes):\n", | ||
" super(DNABert, self).__init__()\n", | ||
" self.n_classes = n_classes\n", | ||
" self.bert = BertModel.from_pretrained('bert-base-uncased')\n", | ||
" self.fc = nn.Linear(self.bert.config.hidden_size, n_classes)\n", | ||
"\n", | ||
" def forward(self, input_ids, attention_mask, token_type_ids=None):\n", | ||
" outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)\n", | ||
" \n", | ||
" # note how we only take one hidden state from the sequeunce, which corresponds with the CLS token\n", | ||
" cls_hidden_state = outputs.last_hidden_state[:, 0, :]\n", | ||
" \n", | ||
" out = self.fc(cls_hidden_state)\n", | ||
" return out\n", | ||
" \n", | ||
" def predict_uncertainty(self, input_ids, attention_mask, token_type_ids=None):\n", | ||
" y_pred = self(input_ids, attention_mask, token_type_ids)\n", | ||
" \n", | ||
" # dempster-shafer theory\n", | ||
" evidence = relu_evidence(outputs) # can also try softplus and exp evidence schemes\n", | ||
" alpha = evidence + 1\n", | ||
" S = torch.sum(alpha, dim=1, keepdim=True)\n", | ||
" u = self.n_classes / S\n", | ||
" prob = alpha / S\n", | ||
" \n", | ||
" # law of total uncertainty \n", | ||
" epistemic = prob * (1 - prob) / (S + 1)\n", | ||
" aleatoric = prob - prob**2 - epistemic\n", | ||
" return prob, u, aleatoric, epistemic" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 55, | ||
"id": "f642e42e-3083-454b-9720-71a78eb04061", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Initialize the model\n", | ||
"num_classes = 10\n", | ||
"\n", | ||
"model = DNABert(n_classes=num_classes)\n", | ||
"\n", | ||
"dna_sequence = \"AGCTAGCTAGCT\"\n", | ||
"\n", | ||
"# We need to convert the DNA sequence to the format expected by BERT\n", | ||
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n", | ||
"inputs = tokenizer(dna_sequence, return_tensors='pt')\n", | ||
"\n", | ||
"# Forward pass through the model\n", | ||
"outputs = model(**inputs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 43, | ||
"id": "dc73cdee-d1f0-409d-bd01-57bfdc80cf46", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'input_ids': tensor([[ 101, 12943, 25572, 18195, 15900, 6593, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])}" | ||
] | ||
}, | ||
"execution_count": 43, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"inputs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 44, | ||
"id": "5a6e6872-28a6-4ac3-b9d9-504792251f34", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([[-0.7508, -0.6081, -0.0026, -0.0115, 0.1004, 0.1924, -0.4315, -0.0052,\n", | ||
" 0.0900, 0.8016]], grad_fn=<AddmmBackward0>)" | ||
] | ||
}, | ||
"execution_count": 44, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"outputs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 45, | ||
"id": "439bc25b-328f-4cd1-a5aa-bc5f9909da7d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"prob, u, aleatoric, epistemic = model.predict_uncertainty(**inputs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 46, | ||
"id": "5d8e5517-a7bb-4c9c-824b-a69e2ecdbca8", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([[0.0894, 0.0894, 0.0894, 0.0894, 0.0984, 0.1066, 0.0894, 0.0894, 0.0975,\n", | ||
" 0.1611]], grad_fn=<DivBackward0>)" | ||
] | ||
}, | ||
"execution_count": 46, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"prob" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 47, | ||
"id": "a886205b-5f16-4255-a6d0-f947e9c17395", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([[0.8941]], grad_fn=<MulBackward0>)" | ||
] | ||
}, | ||
"execution_count": 47, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"u" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 48, | ||
"id": "7bf79791-c511-4c6d-960c-b100794181f4", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([[0.0747, 0.0747, 0.0747, 0.0747, 0.0814, 0.0874, 0.0747, 0.0747, 0.0807,\n", | ||
" 0.1240]], grad_fn=<SubBackward0>)" | ||
] | ||
}, | ||
"execution_count": 48, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"aleatoric" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 50, | ||
"id": "27842698-60a9-419e-82d2-36b5ee341983", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([[0.0067, 0.0067, 0.0067, 0.0067, 0.0073, 0.0078, 0.0067, 0.0067, 0.0072,\n", | ||
" 0.0111]], grad_fn=<DivBackward0>)" | ||
] | ||
}, | ||
"execution_count": 50, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"epistemic" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e8ba8eec-26df-4c24-84a0-141d1caaa28b", | ||
"metadata": {}, | ||
"source": [ | ||
"### Evidential loss" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 52, | ||
"id": "cffcfe27-be85-4948-8ba0-f10502e2f108", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from mlguess.torch.class_losses import edl_digamma_loss, edl_log_loss, edl_mse_loss" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 59, | ||
"id": "ed550265-225f-4720-af09-1be5a86a8aed", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"loss = \"digamma\"\n", | ||
"annealing_coefficient = 10.\n", | ||
"epoch = 0\n", | ||
"device = \"cpu\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 54, | ||
"id": "fee00e6d-be82-40d5-a555-ed2417bca50f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"if loss == \"digamma\":\n", | ||
" criterion = edl_digamma_loss\n", | ||
"elif loss == \"log\":\n", | ||
" criterion = edl_log_loss\n", | ||
"elif loss == \"mse\":\n", | ||
" criterion = edl_mse_loss\n", | ||
"else:\n", | ||
" logging.error(\"--uncertainty requires --mse, --log or --digamma.\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 60, | ||
"id": "69ccc5a0-a560-40d5-b9c2-6c303c8ba238", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"y_true_hot = torch.tensor([1, 0, 0, 0, 0, 0, 0, 0, 0, 0])\n", | ||
"\n", | ||
"loss = criterion(\n", | ||
" outputs,\n", | ||
" y_true_hot.float(), \n", | ||
" epoch, \n", | ||
" num_classes, \n", | ||
" annealing_coefficient, \n", | ||
" device\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 61, | ||
"id": "2b902b09-1047-45d7-a233-2b48ed026481", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor(2.8403, grad_fn=<MeanBackward0>)" | ||
] | ||
}, | ||
"execution_count": 61, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"loss" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9bb75bb5-a005-4c44-8c4e-65026a13cbfc", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# loss.backward" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python [conda env:miniconda3-evidential]", | ||
"language": "python", | ||
"name": "conda-env-miniconda3-evidential-py" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.16" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |