Skip to content

agiresearch/Cerebrum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

96 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Cerebrum: Agent SDK for AIOS

Code License

AIOS is the AI Agent Operating System, which embeds large language model (LLM) into the operating system and facilitates the development and deployment of LLM-based AI Agents. AIOS is designed to address problems (e.g., scheduling, context switch, memory management, storage management, tool management, Agent SDK management, etc.) during the development and deployment of LLM-based agents, towards a better AIOS-Agent ecosystem for agent developers and agent users. AIOS includes the AIOS Kernel (the AIOS repository) and the AIOS SDK (this Cerebrum repository). AIOS supports both Web UI and Terminal UI.

🏠 Cerebrum Architecture

The AIOS-Agent SDK is designed for agent users and developers, enabling them to build and run agent applications by interacting with the AIOS kernel.

πŸ“° News

  • [2024-11-26] πŸ”₯ Cerebrum is available for public release on PyPI!

Installation

Install From Source

  1. Clone Repo

    git clone https://github.com/agiresearch/Cerebrum.git
    
    cd Cerebrum
  2. Create Virtual Environment

    conda create -n cerebrum-env python=3.10

    or

    conda create -n cerebrum-env python=3.11

    or

    # Windows (cmd)
    python -m venv cerebrum-env
    
    # Linux/MacOS
    python3 -m venv cerebrum-env
  3. Activate the environment

    conda activate myenv

    or

    # Windows (cmd)
    cd cerebrum-env
    cd Scripts
    activate.bat
    cd ..
    cd ..
    
    
    # Linux/MacOS
    source cerebrum-env/bin/activate
  4. Install the package

    pip install -e .
  5. Verify installation

    python -c "import cerebrum; from cerebrum.client import Cerebrum; print(Cerebrum)"

✈️ Quickstart

Tip

Please see our documentation for more information.

  1. Start the AIOS Kernel πŸ“ See here.

  2. Run the AIOS Client

    Run an agent using the client

    run-agent --llm_name gpt-4o-mini --llm_backend openai --agent_name_or_path <agent name or agent path> --task <task that agent needs to complete>

    For the agent_name_or_path argument, you can either pass the agent names (in the format of author_name/agent_name) that are available on the agenthub, or pass the absolute path for the agent folder in your computer.

    For example, you can run a demo agent avaiable on the agenthub using the following command:

    run-agent --llm_name gpt-4o-mini --llm_backend openai --agent_name_or_path demo_author/demo_agent --task "Tell me what is core idea of AIOS" --aios_kernel_url http://localhost:8000

    or you can run the demo agent by passing the absolute path of the agent folder in your computer

    run-agent --llm_name gpt-4o-mini --llm_backend openai --agent_name_or_path <your_local_folder_of_cerebrum>/cerebrum/example/agents/demo_agent --task "Tell me what is core idea of AIOS" --aios_kernel_url "http://localhost:8000"

    Code file is located at cerebrum/example/run_agent.py

πŸ‘€ Getting Started with Your Client

Let's walk through how to set up and customize your client to work with the AIOS kernel. We'll break this down into simple steps.

Step 1: Initialize Your Client

First, let's create your client instance:

from cerebrum import config
from cerebrum.client import Cerebrum

aios_kernel_url = "http://localhost:8000"

client = Cerebrum(base_url = aios_kernel_url)
config.global_client = client

Step 2: Add Functionality Layers

The AIOS kernel offers five core modules you can customize:

  • LLM (Language Model)
  • Memory
  • Storage
  • Tools
  • Scheduler

Here's how to add these layers to your client:

from cerebrum.llm.layer import LLMLayer
from cerebrum.memory.layer import MemoryLayer
from cerebrum.overrides.layer import OverridesLayer
from cerebrum.storage.layer import StorageLayer
from cerebrum.tool.layer import ToolLayer

client.add_llm_layer(
    LLMLayer(llm_name="gpt-4o-mini", llm_backend="openai")  # Configure your LLM
).add_storage_layer(
    StorageLayer(root_dir="root")  # Set storage directory
).add_memory_layer(
    MemoryLayer(memory_limit=104857600)  # Set memory per agent
).add_tool_layer(
    ToolLayer()  # Add tool capabilities
).override_scheduler(
    OverridesLayer(max_workers=32)  # Configure scheduling
)

Step 3: Run Your Agent

Now you can run agents and get their results:

try:
    # Connect to the client
    client.connect()
    
    # Execute your agent
    agent_path = "demo_author/demo_agent"  # Your agent's name or path
    task = "Tell me what is core idea of AIOS"       # Your task description
    result = client.execute(agent_path, {"task": task})
    
    # Get the results
    final_result = client.poll_agent(
        result["execution_id"],
        timeout=300
    )
    print("πŸ“‹ Task result:", final_result)
    print("βœ… Task completed")

except TimeoutError:
    print("❌ Task timed out")
except Exception as e:
    print(f"❌ Failed to execute task: {str(e)}")
finally:
    client.cleanup()

You can find all these agents in the example agents folder. If you would like to customize and develop your new agents, you can check out the guides on Developing New Agents and Developing New Tools.

πŸš€ Develop and customize new agents

This guide will walk you through creating and publishing your own agents for AIOS.

Agent Structure

First, let's look at how to organize your agent's files. Every agent needs three essential components:

author/
└── agent_name/
      │── entry.py        # Your agent's main logic
      │── config.json     # Configuration and metadata
      └── meta_requirements.txt  # Additional dependencies

For example, if your name is 'example' and you're building a demo_agent that searches and summarizes articles, your folder structure would look like this:

example/
   └── demo_agent/
         │── entry.py
         │── config.json
         └── meta_requirements.txt

Note: If your agent needs any libraries beyond AIOS's built-in ones, make sure to list them in meta_requirements.txt. Apart from the above three files, you can have any other files in your folder.

Configure the agent

Set up Metadata

Your agent needs a config.json file that describes its functionality. Here's what it should include:

{
   "name": "demo_agent",
   "description": [
      "Demo agent that can help search AIOS-related papers"
   ],
   "tools": [
      "demo_author/arxiv"
   ],
   "meta": {
      "author": "demo_author",
      "version": "0.0.1",
      "license": "CC0"
   },
   "build": {
      "entry": "agent.py",
      "module": "DemoAgent"
   }
}

Available tools

When setting up your agent, you'll need to specify which tools it will use. Below is a list of all currently available tools and how to reference them in your configuration:

Author Name How to call them
example arxiv example/arxiv
example bing_search example/bing_search
example currency_converter example/currency_converter
example wolfram_alpha example/wolfram_alpha
example google_search example/google_search
openai speech_to_text openai/speech_to_text
example web_browser example/web_browser
timbrooks image_to_image timbrooks/image_to_image
example downloader example/downloader
example doc_question_answering example/doc_question_answering
stability-ai text_to_image stability-ai/text_to_image
example text_to_speech example/text_to_speech

To use these tools in your agent, simply include their reference (from the "How to Use" column) in your agent's configuration file. For example, if you want your agent to be able to search academic papers and convert currencies, you would include both example/arxiv and example/currency_converter in your configuration.

If you would like to create your new tools, you can either integrate the tool within your agent code or you can follow the tool examples in the tool folder to develop your standalone tools. The detailed instructions are in How to develop new tools

Build Agent

Let's walk through creating your agent's core functionality.

Set up the Base Agent Class

First, create your agent class by inheriting from BaseAgent:

from cerebrum.agents.base import BaseAgent
from cerebrum.llm.communication import LLMQuery
import json

class DemoAgent(BaseAgent):
    def __init__(self, agent_name, task_input, config_):
        super().__init__(agent_name, task_input, config_)

        self.plan_max_fail_times = 3
        self.tool_call_max_fail_times = 3

        self.start_time = None
        self.end_time = None
        self.request_waiting_times: list = []
        self.request_turnaround_times: list = []
        self.task_input = task_input
        self.messages = []
        self.workflow_mode = "manual"  # (manual, automatic)
        self.rounds = 0

Import Query Functions

AIOS provides several Query classes for different types of interactions and use the Response class in here to receive results from the AIOS kernel.

Query Class Arguments Output
LLMQuery messages: List, tools: List, action_type: str, message_return_type: str response: Response
MemoryQuery TBD response: Response
StorageQuery TBD response: Response
ToolQuery tool_calls: List response: Response

Here's how to import a specific query

from cerebrum.llm.communication import LLMQuery  # Using LLMQuery as an example

Construct system instructions

Here's how to set up your agent's system instructions and you need to put this function inside your agent class

def build_system_instruction(self):
    prefix = "".join(["".join(self.config["description"])])

    plan_instruction = "".join(
        [
            f"You are given the available tools from the tool list: {json.dumps(self.tool_info)} to help you solve problems. ",
            "Generate a plan with comprehensive yet minimal steps to fulfill the task. ",
            "The plan must follow the json format as below: ",
            "[",
            '{"action_type": "action_type_value", "action": "action_value","tool_use": [tool_name1, tool_name2,...]}',
            '{"action_type": "action_type_value", "action": "action_value", "tool_use": [tool_name1, tool_name2,...]}',
            "...",
            "]",
            "In each step of the planned plan, identify tools to use and recognize no tool is necessary. ",
            "Followings are some plan examples. ",
            "[" "[",
            '{"action_type": "tool_use", "action": "gather information from arxiv. ", "tool_use": ["arxiv"]},',
            '{"action_type": "chat", "action": "write a summarization based on the gathered information. ", "tool_use": []}',
            "];",
            "[",
            '{"action_type": "tool_use", "action": "gather information from arxiv. ", "tool_use": ["arxiv"]},',
            '{"action_type": "chat", "action": "understand the current methods and propose ideas that can improve ", "tool_use": []}',
            "]",
            "]",
        ]
    )

    if self.workflow_mode == "manual":
        self.messages.append({"role": "system", "content": prefix})

    else:
        assert self.workflow_mode == "automatic"
        self.messages.append({"role": "system", "content": prefix})
        self.messages.append({"role": "user", "content": plan_instruction})

Create Workflows

You can create a workflow for the agent to execute its task and you need to put this function inside your agent class.

Manual workflow example:

def manual_workflow(self):
    workflow = [
        {
            "action_type": "tool_use",
            "action": "Search for relevant papers",
            "tool_use": ["demo_author/arxiv"],
        },
        {
            "action_type": "chat",
            "action": "Provide responses based on the user's query",
            "tool_use": [],
        },
    ]
    return workflow

Implement the Run Method

Finally, implement the run method to execute your agent's workflow and you need to put this function inside your agent class.

def run(self):
    self.build_system_instruction()

    task_input = self.task_input

    self.messages.append({"role": "user", "content": task_input})

    workflow = None

    if self.workflow_mode == "automatic":
        workflow = self.automatic_workflow()
        self.messages = self.messages[:1]  # clear long context

    else:
        assert self.workflow_mode == "manual"
        workflow = self.manual_workflow()

    self.messages.append(
        {
            "role": "user",
            "content": f"[Thinking]: The workflow generated for the problem is {json.dumps(workflow)}. Follow the workflow to solve the problem step by step. ",
        }
    )

    try:
        if workflow:
            final_result = ""

            for i, step in enumerate(workflow):
                action_type = step["action_type"]
                action = step["action"]
                tool_use = step["tool_use"]

                prompt = f"At step {i + 1}, you need to: {action}. "
                self.messages.append({"role": "user", "content": prompt})

                if tool_use:
                    selected_tools = self.pre_select_tools(tool_use)

                else:
                    selected_tools = None

                response = self.send_request(
                    agent_name=self.agent_name,
                    query=LLMQuery(
                        messages=self.messages,
                        tools=selected_tools,
                        action_type=action_type,
                    ),
                )["response"]
                
                self.messages.append({"role": "assistant", "content": response.response_message})

                self.rounds += 1


            final_result = self.messages[-1]["content"]
            
            return {
                "agent_name": self.agent_name,
                "result": final_result,
                "rounds": self.rounds,
            }

        else:
            return {
                "agent_name": self.agent_name,
                "result": "Failed to generate a valid workflow in the given times.",
                "rounds": self.rounds,
            }
            
    except Exception as e:
        return {}

Run the Agent

To test your agent, use the run_agent command to run:

run-agent --llm_name <llm_name> --llm_backend <llm_backend> --agent_name_or_path <agent_name_or_path> --task <task_input> --aios_kernel_url <aios_kernel_url>

Replace the placeholders with your specific values:

  • <llm_name>: The name of the language model you want to use
  • <llm_backend>: The backend service for the language model
  • <your_agent_folder_path>: The path to your agent's folder
  • <task_input>: The task you want your agent to complete
  • <aios_kernel_url>: The url that is connected to the aios kernel

or you can run the agent using the source code in the cerebrum/example/run_agent

python cerebrum/example/run_agent --llm_name <llm_name> --llm_backend <llm_backend> --agent_name_or_path <agent_name_or_path>> --task <task_input> --aios_kernel_url <aios_kernel_url>

πŸ”§Develop and Customize New Tools

Tool Structure

Similar as developing new agents, developing tools also need to follow a simple directory structure:

demo_author/
└── demo_tool/
    │── entry.py      # Contains your tool's main logic
    └── config.json   # Tool configuration and metadata

Setting up config.json

Your tool needs a configuration file that describes its properties. Here's an example of how to set it up:

{
    "name": "arxiv",
    "description": [
        "The arxiv tool that can be used to search for papers on arxiv"
    ],
    "meta": {
        "author": "demo_author",
        "version": "1.0.6",
        "license": "CC0"
    },
    "build": {
        "entry": "tool.py",
        "module": "Arxiv"
    }
}

Create Tool Class

In entry.py, you'll need to implement a tool class which is identified in the config.json with two essential methods:

  1. get_tool_call_format: Defines how LLMs should interact with your tool
  2. run: Contains your tool's main functionality

Here's an example:

class Arxiv:
    def get_tool_call_format(self):
        tool_call_format = {
            "type": "function",
            "function": {
                "name": "demo_author/arxiv",
                "description": "Query articles or topics in arxiv",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "query": {
                            "type": "string",
                            "description": "Input query that describes what to search in arxiv"
                        }
                    },
                    "required": [
                        "query"
                    ]
                }
            }
        }
        return tool_call_format

    def run(self, params: dict):
        """
        Main tool logic goes here.
        Args:
            params: Dictionary containing tool parameters
        Returns:
            Your tool's output
        """
        # Your code here
        result = do_something(params['param_name'])
        return result

Integration Tips

When integrating your tool for the agents you develop:

  • Use absolute paths to reference your tool in agent configurations
  • Example: /path/to/your/tools/example/your_tool instead of just author/tool_name

Supported LLM Cores

Provider 🏒 Model Name πŸ€– Open Source πŸ”“ Model String ⌨️ Backend βš™οΈ Required API Key
Anthropic Claude 3.5 Sonnet ❌ claude-3-5-sonnet-20241022 anthropic ANTHROPIC_API_KEY
Anthropic Claude 3.5 Haiku ❌ claude-3-5-haiku-20241022 anthropic ANTHROPIC_API_KEY
Anthropic Claude 3 Opus ❌ claude-3-opus-20240229 anthropic ANTHROPIC_API_KEY
Anthropic Claude 3 Sonnet ❌ claude-3-sonnet-20240229 anthropic ANTHROPIC_API_KEY
Anthropic Claude 3 Haiku ❌ claude-3-haiku-20240307 anthropic ANTHROPIC_API_KEY
OpenAI GPT-4 ❌ gpt-4 openai OPENAI_API_KEY
OpenAI GPT-4 Turbo ❌ gpt-4-turbo openai OPENAI_API_KEY
OpenAI GPT-4o ❌ gpt-4o openai OPENAI_API_KEY
OpenAI GPT-4o mini ❌ gpt-4o-mini openai OPENAI_API_KEY
OpenAI GPT-3.5 Turbo ❌ gpt-3.5-turbo openai OPENAI_API_KEY
Google Gemini 1.5 Flash ❌ gemini-1.5-flash google GEMINI_API_KEY
Google Gemini 1.5 Flash-8B ❌ gemini-1.5-flash-8b google GEMINI_API_KEY
Google Gemini 1.5 Pro ❌ gemini-1.5-pro google GEMINI_API_KEY
Google Gemini 1.0 Pro ❌ gemini-1.0-pro google GEMINI_API_KEY
Groq Llama 3.2 90B Vision βœ… llama-3.2-90b-vision-preview groq GROQ_API_KEY
Groq Llama 3.2 11B Vision βœ… llama-3.2-11b-vision-preview groq GROQ_API_KEY
Groq Llama 3.1 70B βœ… llama-3.1-70b-versatile groq GROQ_API_KEY
Groq Llama Guard 3 8B βœ… llama-guard-3-8b groq GROQ_API_KEY
Groq Llama 3 70B βœ… llama3-70b-8192 groq GROQ_API_KEY
Groq Llama 3 8B βœ… llama3-8b-8192 groq GROQ_API_KEY
Groq Mixtral 8x7B βœ… mixtral-8x7b-32768 groq GROQ_API_KEY
Groq Gemma 7B βœ… gemma-7b-it groq GROQ_API_KEY
Groq Gemma 2B βœ… gemma2-9b-it groq GROQ_API_KEY
Groq Llama3 Groq 70B βœ… llama3-groq-70b-8192-tool-use-preview groq GROQ_API_KEY
Groq Llama3 Groq 8B βœ… llama3-groq-8b-8192-tool-use-preview groq GROQ_API_KEY
ollama All Models βœ… model-name ollama -
vLLM All Models βœ… model-name vllm -
HuggingFace All Models βœ… model-name huggingface HF_HOME

πŸ–‹οΈ References

@article{mei2024aios,
  title={AIOS: LLM Agent Operating System},
  author={Mei, Kai and Li, Zelong and Xu, Shuyuan and Ye, Ruosong and Ge, Yingqiang and Zhang, Yongfeng}
  journal={arXiv:2403.16971},
  year={2024}
}
@article{ge2023llm,
  title={LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem},
  author={Ge, Yingqiang and Ren, Yujie and Hua, Wenyue and Xu, Shuyuan and Tan, Juntao and Zhang, Yongfeng},
  journal={arXiv:2312.03815},
  year={2023}
}

πŸš€ Contributions

For how to contribute, see CONTRIBUTE. If you would like to contribute to the codebase, issues or pull requests are always welcome!

🌍 Cerebrum Contributors

Cerebrum contributors

🀝 Discord Channel

If you would like to join the community, ask questions, chat with fellows, learn about or propose new features, and participate in future developments, join our Discord Community!

πŸ“ͺ Contact

For issues related to Cerebrum development, we encourage submitting issues, pull requests, or initiating discussions in AIOS Discord Channel. For other issues please feel free to contact the AIOS Foundation ([email protected]).