Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pullback properties #449

Merged
merged 5 commits into from
Feb 20, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 93 additions & 0 deletions src/Categories/Diagram/Pullback/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -189,3 +189,96 @@ module IsoPb {X Y Z} {f : X ⇒ Z} {g : Y ⇒ Z} (pull₀ pull₁ : Pullback f g

p₂-≈ : p₂ pull₁ ∘ P₀⇒P₁ ≈ p₂ pull₀
p₂-≈ = p₂∘universal≈h₂ pull₁ {eq = commute pull₀}


-- pasting law for pullbacks:
-- in a commutative diagram of the form
-- A -> B -> C
-- | | |
-- D -> E -> F
-- if the right square (BCEF) is a pullback,
-- then the left square (ABDE) is a pullback
-- iff the big square (ACDF) is a pullback.
module PullbackPastingLaw {A B C D E F : Obj}
{f : A ⇒ B} {g : B ⇒ C} {h : A ⇒ D} {i : B ⇒ E} {j : C ⇒ F} {k : D ⇒ E} {l : E ⇒ F}
(ABDE : i ∘ f ≈ k ∘ h) (BCEF : j ∘ g ≈ l ∘ i) (pbᵣ : IsPullback g i j l) where

open IsPullback using (p₁∘universal≈h₁; p₂∘universal≈h₂; universal; unique-diagram)

leftPullback⇒bigPullback : IsPullback f h i k → IsPullback (g ∘ f) h j (l ∘ k)
leftPullback⇒bigPullback pbₗ = record
{ commute = ACDF
; universal = universalb
; p₁∘universal≈h₁ = [g∘f]∘universalb≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂ pbₗ
; unique-diagram = unique-diagramb
} where
ACDF : j ∘ (g ∘ f) ≈ (l ∘ k) ∘ h
ACDF = begin
j ∘ g ∘ f ≈⟨ extendʳ BCEF ⟩
l ∘ i ∘ f ≈⟨ pushʳ ABDE ⟩
(l ∘ k) ∘ h ∎

-- first apply universal property of (BCEF) to get a morphism H -> B,
-- then apply universal property of (ABDE) to get a morphism H -> A.
universalb : {H : Obj} {h₁ : H ⇒ C} {h₂ : H ⇒ D} → j ∘ h₁ ≈ (l ∘ k) ∘ h₂ → H ⇒ A
universalb {_} {h₁} {h₂} eq = universal pbₗ (p₂∘universal≈h₂ pbᵣ {eq = j∘h₁≈l∘k∘h₂}) where
j∘h₁≈l∘k∘h₂ : j ∘ h₁ ≈ l ∘ k ∘ h₂
j∘h₁≈l∘k∘h₂ = begin
j ∘ h₁ ≈⟨ eq ⟩
(l ∘ k) ∘ h₂ ≈⟨ assoc ⟩
l ∘ k ∘ h₂ ∎

[g∘f]∘universalb≈h₁ : {H : Obj} {h₁ : H ⇒ C} {h₂ : H ⇒ D} {eq : j ∘ h₁ ≈ (l ∘ k) ∘ h₂} → (g ∘ f) ∘ universalb eq ≈ h₁
[g∘f]∘universalb≈h₁ {h₁ = h₁} = begin
(g ∘ f) ∘ universalb _ ≈⟨ pullʳ (p₁∘universal≈h₁ pbₗ) ⟩
g ∘ universal pbᵣ _ ≈⟨ p₁∘universal≈h₁ pbᵣ ⟩
h₁ ∎

unique-diagramb : {H : Obj} {s t : H ⇒ A} → (g ∘ f) ∘ s ≈ (g ∘ f) ∘ t → h ∘ s ≈ h ∘ t → s ≈ t
unique-diagramb {_} {s} {t} eq eq' = unique-diagram pbₗ (unique-diagram pbᵣ g∘f∘s≈g∘f∘t i∘f∘s≈i∘f∘t) eq' where
g∘f∘s≈g∘f∘t : g ∘ f ∘ s ≈ g ∘ f ∘ t
g∘f∘s≈g∘f∘t = begin
g ∘ f ∘ s ≈⟨ sym-assoc ⟩
(g ∘ f) ∘ s ≈⟨ eq ⟩
(g ∘ f) ∘ t ≈⟨ assoc ⟩
g ∘ f ∘ t ∎
i∘f∘s≈i∘f∘t : i ∘ f ∘ s ≈ i ∘ f ∘ t
i∘f∘s≈i∘f∘t = begin
i ∘ f ∘ s ≈⟨ pullˡ ABDE ⟩
(k ∘ h) ∘ s ≈⟨ pullʳ eq' ⟩
k ∘ h ∘ t ≈⟨ extendʳ (sym ABDE) ⟩
i ∘ f ∘ t ∎

bigPullback⇒leftPullback : IsPullback (g ∘ f) h j (l ∘ k) → IsPullback f h i k
bigPullback⇒leftPullback pbb = record
{ commute = ABDE
; universal = universalₗ
; p₁∘universal≈h₁ = f∘universalₗ≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂ pbb
; unique-diagram = unique-diagramb
} where
universalₗ : {H : Obj} {h₁ : H ⇒ B} {h₂ : H ⇒ D} → i ∘ h₁ ≈ k ∘ h₂ → H ⇒ A
universalₗ {_} {h₁} {h₂} eq = universal pbb j∘g∘h₁≈[l∘k]∘h₂ where
j∘g∘h₁≈[l∘k]∘h₂ : j ∘ g ∘ h₁ ≈ (l ∘ k) ∘ h₂
j∘g∘h₁≈[l∘k]∘h₂ = begin
j ∘ g ∘ h₁ ≈⟨ pullˡ BCEF ⟩
(l ∘ i) ∘ h₁ ≈⟨ extendˡ eq ⟩
(l ∘ k) ∘ h₂ ∎

f∘universalₗ≈h₁ : {H : Obj} {h₁ : H ⇒ B} {h₂ : H ⇒ D} {eq : i ∘ h₁ ≈ k ∘ h₂} → f ∘ universalₗ eq ≈ h₁
f∘universalₗ≈h₁ {_} {h₁} {h₂} {eq} = unique-diagram pbᵣ g∘f∘universalₗ≈g∘h₁ i∘f∘universalₗ≈i∘h₁ where
g∘f∘universalₗ≈g∘h₁ : g ∘ f ∘ universalₗ _ ≈ g ∘ h₁
g∘f∘universalₗ≈g∘h₁ = begin
g ∘ f ∘ universalₗ _ ≈⟨ sym-assoc ⟩
(g ∘ f) ∘ universalₗ _ ≈⟨ p₁∘universal≈h₁ pbb ⟩
g ∘ h₁ ∎
i∘f∘universalₗ≈i∘h₁ : i ∘ f ∘ universalₗ _ ≈ i ∘ h₁
i∘f∘universalₗ≈i∘h₁ = begin
i ∘ f ∘ universalₗ _ ≈⟨ pullˡ ABDE ⟩
(k ∘ h) ∘ universalₗ _ ≈⟨ pullʳ (p₂∘universal≈h₂ pbb) ⟩
k ∘ h₂ ≈⟨ sym eq ⟩
i ∘ h₁ ∎

unique-diagramb : {H : Obj} {s t : H ⇒ A} → f ∘ s ≈ f ∘ t → h ∘ s ≈ h ∘ t → s ≈ t
unique-diagramb eq eq' = unique-diagram pbb (extendˡ eq) eq'