Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

More dagger category theory #420

Merged
merged 14 commits into from
Jun 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions src/Categories/Category/Construction/DaggerFunctors.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{-# OPTIONS --safe --without-K #-}

module Categories.Category.Construction.DaggerFunctors where

open import Categories.Category.Core using (Category)
open import Categories.Category.Construction.Functors using (Functors)
open import Categories.Category.SubCategory using (FullSubCategory)
open import Categories.Category.Dagger using (DaggerCategory)
open import Categories.Functor.Dagger using (DaggerFunctor)

open import Level using (Level; _⊔_)

private
variable
o ℓ e o′ ℓ′ e′ : Level

DaggerFunctors : DaggerCategory o ℓ e DaggerCategory o′ ℓ′ e′ Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′)
DaggerFunctors C D = FullSubCategory (Functors (DaggerCategory.C C) (DaggerCategory.C D)) {I = DaggerFunctor C D} DaggerFunctor.functor
65 changes: 65 additions & 0 deletions src/Categories/Category/Dagger/Construction/DaggerFunctors.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
{-# OPTIONS --safe --without-K #-}

module Categories.Category.Dagger.Construction.DaggerFunctors where

open import Categories.Category.Dagger using (DaggerCategory)
import Categories.Category.Construction.DaggerFunctors as cat
open import Categories.Functor.Dagger using (DaggerFunctor)
open import Categories.NaturalTransformation using (NaturalTransformation)

open import Function.Base using (_$_)
open import Level using (Level; _⊔_)

private
variable
o ℓ e o′ ℓ′ e′ : Level

DaggerFunctors : (C : DaggerCategory o ℓ e) (D : DaggerCategory o′ ℓ′ e′)
→ DaggerCategory (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′)
DaggerFunctors C D = record
{ C = cat.DaggerFunctors C D
; hasDagger = record
{ _† = λ {F} {G} α → dagger F G α
; †-identity = †-identity
; †-homomorphism = †-homomorphism
; †-resp-≈ = λ α≈β → †-resp-≈ α≈β
; †-involutive = λ α → †-involutive (NaturalTransformation.η α _)
}
}
where
open DaggerCategory C using () renaming (_† to _‡)
open DaggerCategory D hiding (C)
open HomReasoning

dagger : ∀ (F G : DaggerFunctor C D)
→ NaturalTransformation (DaggerFunctor.functor F) (DaggerFunctor.functor G)
→ NaturalTransformation (DaggerFunctor.functor G) (DaggerFunctor.functor F)
dagger F G α = record
{ η = λ X → α.η X †
; commute = λ {X Y} f → begin
α.η Y † ∘ G.₁ f ≈˘⟨ †-involutive _ ⟩
(α.η Y † ∘ G.₁ f) † † ≈⟨ †-resp-≈ $ begin
(α.η Y † ∘ G.₁ f) † ≈⟨ †-homomorphism ⟩
G.₁ f † ∘ α.η Y † † ≈⟨ G.F-resp-† ⟩∘⟨ †-involutive _ ⟩
G.₁ (f ‡) ∘ α.η Y ≈⟨ α.sym-commute (f ‡) ⟩
α.η X ∘ F.₁ (f ‡) ≈˘⟨ †-involutive _ ⟩∘⟨ F.F-resp-† ⟩
α.η X † † ∘ F.₁ f † ≈˘⟨ †-homomorphism ⟩
(F.₁ f ∘ α.η X †) † ∎ ⟩
(F.₁ f ∘ α.η X †) † † ≈⟨ †-involutive _ ⟩
F.₁ f ∘ α.η X † ∎
; sym-commute = λ {X Y} f → begin
F.₁ f ∘ α.η X † ≈˘⟨ †-involutive _ ⟩
(F.₁ f ∘ α.η X †) † † ≈⟨ †-resp-≈ $ begin
(F.₁ f ∘ α.η X †) † ≈⟨ †-homomorphism ⟩
α.η X † † ∘ F.₁ f † ≈⟨ †-involutive _ ⟩∘⟨ F.F-resp-† ⟩
α.η X ∘ F.₁ (f ‡) ≈⟨ α.commute (f ‡) ⟩
G.₁ (f ‡) ∘ α.η Y ≈˘⟨ G.F-resp-† ⟩∘⟨ †-involutive _ ⟩
G.₁ f † ∘ α.η Y † † ≈˘⟨ †-homomorphism ⟩
(α.η Y † ∘ G.₁ f) † ∎ ⟩
(α.η Y † ∘ G.₁ f) † † ≈⟨ †-involutive _ ⟩
α.η Y † ∘ G.₁ f ∎
}
where
module F = DaggerFunctor F
module G = DaggerFunctor G
module α = NaturalTransformation α
4 changes: 2 additions & 2 deletions src/Categories/Category/Instance/Cats.agda
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ open import Level
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; id; _∘F_)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; associator; unitorˡ; unitorʳ; unitor²; isEquivalence; _ⓘₕ_; sym)
using (NaturalIsomorphism; associator; sym-associator; unitorˡ; unitorʳ; unitor²; isEquivalence; _ⓘₕ_)
private
variable
o ℓ e : Level
Expand All @@ -24,7 +24,7 @@ Cats o ℓ e = record
; id = id
; _∘_ = _∘F_
; assoc = λ {_ _ _ _ F G H} associator F G H
; sym-assoc = λ {_ _ _ _ F G H} sym (associator F G H)
; sym-assoc = λ {_ _ _ _ F G H} sym-associator F G H
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
Expand Down
31 changes: 31 additions & 0 deletions src/Categories/Category/Instance/DagCats.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
{-# OPTIONS --safe --without-K #-}

module Categories.Category.Instance.DagCats where

open import Categories.Category.Core using (Category)
open import Categories.Category.Dagger using (DaggerCategory)
open import Categories.Functor.Dagger using (DaggerFunctor; id; _∘F†_)
open import Categories.NaturalTransformation.NaturalIsomorphism

open import Function.Base using (_on_)
open import Level using (suc; _⊔_)

DagCats : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
DagCats o ℓ e = record
{ Obj = DaggerCategory o ℓ e
; _⇒_ = DaggerFunctor
; _≈_ = NaturalIsomorphism on functor
; id = id
; _∘_ = _∘F†_
; assoc = λ {_ _ _ _ F G H} → associator (functor F) (functor G) (functor H)
; sym-assoc = λ {_ _ _ _ F G H} → sym-associator (functor F) (functor G) (functor H)
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = _ⓘₕ_
} where open DaggerFunctor
40 changes: 40 additions & 0 deletions src/Categories/Functor/Dagger.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
{-# OPTIONS --safe --without-K #-}

module Categories.Functor.Dagger where

open import Categories.Category.Dagger using (DaggerCategory)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)

open import Level using (Level; _⊔_)

private
variable
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level

record DaggerFunctor (C : DaggerCategory o ℓ e) (D : DaggerCategory o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module C = DaggerCategory C
module D = DaggerCategory D
field
functor : Functor C.C D.C

open Functor functor public

field
F-resp-† : ∀ {X Y} {f : X C.⇒ Y} → F₁ f D.† D.≈ F₁ (f C.†)

id : ∀ {C : DaggerCategory o ℓ e} → DaggerFunctor C C
id {C = C} = record
{ functor = idF
; F-resp-† = DaggerCategory.Equiv.refl C
}

_∘F†_ : ∀ {C : DaggerCategory o ℓ e} {D : DaggerCategory o′ ℓ′ e′} {E : DaggerCategory o″ ℓ″ e″}
→ DaggerFunctor D E → DaggerFunctor C D → DaggerFunctor C E
_∘F†_ {E = E} F G = record
{ functor = F.functor ∘F G.functor
; F-resp-† = DaggerCategory.Equiv.trans E F.F-resp-† (F.F-resp-≈ G.F-resp-†)
}
where
module F = DaggerFunctor F
module G = DaggerFunctor G