-
Notifications
You must be signed in to change notification settings - Fork 69
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
move properties to Categories.Category.Distributive.Properties
- Loading branch information
Showing
2 changed files
with
113 additions
and
92 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
|
||
open import Categories.Category.Core using (Category) | ||
open import Categories.Category.Cartesian using (Cartesian) | ||
open import Categories.Category.BinaryProducts using (BinaryProducts) | ||
open import Categories.Category.Cocartesian using (Cocartesian) | ||
open import Categories.Category.Distributive using (Distributive) | ||
|
||
import Categories.Morphism as M | ||
import Categories.Morphism.Reasoning as MR | ||
import Categories.Morphism.Properties as MP | ||
|
||
module Categories.Category.Distributive.Properties {o ℓ e} {𝒞 : Category o ℓ e} (distributive : Distributive 𝒞) where | ||
open Category 𝒞 | ||
open M 𝒞 | ||
open MR 𝒞 | ||
open MP 𝒞 | ||
open HomReasoning | ||
open Equiv | ||
|
||
open Distributive distributive | ||
open Cartesian cartesian using (products) | ||
open BinaryProducts products | ||
open Cocartesian cocartesian | ||
|
||
-- distribution and injection | ||
distributeˡ⁻¹-i₁ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (id ⁂ i₁) ≈ i₁ | ||
distributeˡ⁻¹-i₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ)) | ||
|
||
distributeˡ⁻¹-i₂ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (id ⁂ i₂) ≈ i₂ | ||
distributeˡ⁻¹-i₂ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ)) | ||
|
||
distributeʳ⁻¹-i₁ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₁ ⁂ id) ≈ i₁ | ||
distributeʳ⁻¹-i₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ)) | ||
|
||
distributeʳ⁻¹-i₂ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₂ ⁂ id) ≈ i₂ | ||
distributeʳ⁻¹-i₂ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ)) | ||
|
||
-- distribution and projection | ||
distributeˡ⁻¹-π₁ : ∀ {A B C} → [ π₁ , π₁ ] ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₁ | ||
distributeˡ⁻¹-π₁ = sym (begin | ||
π₁ ≈⟨ introʳ (IsIso.isoʳ isIsoˡ) ⟩ | ||
π₁ ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ pullˡ ∘[] ⟩ | ||
([ π₁ ∘ ((id ⁂ i₁)) , π₁ ∘ (id ⁂ i₂) ] ∘ distributeˡ⁻¹) ≈⟨ (([]-cong₂ (π₁∘⁂ ○ identityˡ) (π₁∘⁂ ○ identityˡ)) ⟩∘⟨refl) ⟩ | ||
[ π₁ , π₁ ] ∘ distributeˡ⁻¹ ∎) | ||
|
||
distributeʳ⁻¹-π₁ : ∀ {A B C} → (π₁ +₁ π₁) ∘ distributeʳ⁻¹ {A} {B} {C} ≈ π₁ | ||
distributeʳ⁻¹-π₁ = sym (begin | ||
π₁ ≈⟨ introʳ (IsIso.isoʳ isIsoʳ) ⟩ | ||
π₁ ∘ distributeʳ ∘ distributeʳ⁻¹ ≈⟨ pullˡ ∘[] ⟩ | ||
[ π₁ ∘ (i₁ ⁂ id) , π₁ ∘ (i₂ ⁂ id) ] ∘ distributeʳ⁻¹ | ||
≈⟨ (([]-cong₂ π₁∘⁂ π₁∘⁂) ⟩∘⟨refl) ⟩ | ||
((π₁ +₁ π₁) ∘ distributeʳ⁻¹) ∎) | ||
|
||
distributeˡ⁻¹-π₂ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂ | ||
distributeˡ⁻¹-π₂ = sym (begin | ||
π₂ ≈⟨ introʳ (IsIso.isoʳ isIsoˡ) ⟩ | ||
π₂ ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ pullˡ ∘[] ⟩ | ||
[ π₂ ∘ ((id ⁂ i₁)) , π₂ ∘ (id ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩ | ||
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎) | ||
|
||
distributeʳ⁻¹-π₂ : ∀ {A B C} → [ π₂ , π₂ ] ∘ distributeʳ⁻¹ {A} {B} {C} ≈ π₂ | ||
distributeʳ⁻¹-π₂ = sym (begin | ||
π₂ ≈⟨ introʳ (IsIso.isoʳ isIsoʳ) ⟩ | ||
π₂ ∘ distributeʳ ∘ distributeʳ⁻¹ ≈⟨ pullˡ ∘[] ⟩ | ||
([ π₂ ∘ ((i₁ ⁂ id)) , π₂ ∘ (i₂ ⁂ id) ] ∘ distributeʳ⁻¹) ≈⟨ (([]-cong₂ (π₂∘⁂ ○ identityˡ) (π₂∘⁂ ○ identityˡ)) ⟩∘⟨refl) ⟩ | ||
[ π₂ , π₂ ] ∘ distributeʳ⁻¹ ∎) | ||
|
||
-- distribute over products | ||
distributeˡ⁻¹-natural : ∀ {X Y Z U V W} (f : X ⇒ U) (g : Y ⇒ V) (h : Z ⇒ W) → ((f ⁂ g) +₁ (f ⁂ h)) ∘ distributeˡ⁻¹ ≈ distributeˡ⁻¹ ∘ (f ⁂ (g +₁ h)) | ||
distributeˡ⁻¹-natural f g h = begin | ||
((f ⁂ g) +₁ (f ⁂ h)) ∘ distributeˡ⁻¹ ≈⟨ introˡ (IsIso.isoˡ isIsoˡ) ⟩ | ||
(distributeˡ⁻¹ ∘ distributeˡ) ∘ ((f ⁂ g) +₁ (f ⁂ h)) ∘ distributeˡ⁻¹ ≈⟨ pullˡ (pullʳ []∘+₁) ⟩ | ||
(distributeˡ⁻¹ ∘ [(id ⁂ i₁) ∘ (f ⁂ g) , (id ⁂ i₂) ∘ (f ⁂ h)]) ∘ distributeˡ⁻¹ ≈⟨ (refl⟩∘⟨ ([]-cong₂ ⁂∘⁂ ⁂∘⁂)) ⟩∘⟨refl ⟩ | ||
(distributeˡ⁻¹ ∘ [ id ∘ f ⁂ i₁ ∘ g , id ∘ f ⁂ i₂ ∘ h ]) ∘ distributeˡ⁻¹ ≈˘⟨ (refl⟩∘⟨ ([]-cong₂ (⁂-cong₂ id-comm +₁∘i₁) (⁂-cong₂ id-comm +₁∘i₂))) ⟩∘⟨refl ⟩ | ||
(distributeˡ⁻¹ ∘ [ f ∘ id ⁂ (g +₁ h) ∘ i₁ , f ∘ id ⁂ (g +₁ h) ∘ i₂ ]) ∘ distributeˡ⁻¹ ≈˘⟨ (refl⟩∘⟨ ([]-cong₂ ⁂∘⁂ ⁂∘⁂)) ⟩∘⟨refl ⟩ | ||
(distributeˡ⁻¹ ∘ [ ((f ⁂ (g +₁ h)) ∘ (id ⁂ i₁)) , ((f ⁂ (g +₁ h)) ∘ (id ⁂ i₂)) ]) ∘ distributeˡ⁻¹ ≈˘⟨ pullˡ (pullʳ ∘[]) ⟩ | ||
(distributeˡ⁻¹ ∘ (f ⁂ (g +₁ h))) ∘ distributeˡ ∘ distributeˡ⁻¹ ≈˘⟨ introʳ (IsIso.isoʳ isIsoˡ) ⟩ | ||
distributeˡ⁻¹ ∘ (f ⁂ (g +₁ h)) ∎ | ||
|
||
distributeʳ⁻¹-natural : ∀ {X Y Z U V W} (f : X ⇒ U) (g : Y ⇒ V) (h : Z ⇒ W) → ((g ⁂ f) +₁ (h ⁂ f)) ∘ distributeʳ⁻¹ ≈ distributeʳ⁻¹ ∘ ((g +₁ h) ⁂ f) | ||
distributeʳ⁻¹-natural f g h = begin | ||
((g ⁂ f) +₁ (h ⁂ f)) ∘ distributeʳ⁻¹ ≈⟨ introˡ (IsIso.isoˡ isIsoʳ) ⟩ | ||
(distributeʳ⁻¹ ∘ distributeʳ) ∘ (g ⁂ f +₁ h ⁂ f) ∘ distributeʳ⁻¹ ≈⟨ pullˡ (pullʳ []∘+₁) ⟩ | ||
(distributeʳ⁻¹ ∘ [ (i₁ ⁂ id) ∘ (g ⁂ f) , (i₂ ⁂ id) ∘ (h ⁂ f) ]) ∘ distributeʳ⁻¹ ≈⟨ (refl⟩∘⟨ ([]-cong₂ ⁂∘⁂ ⁂∘⁂)) ⟩∘⟨refl ⟩ | ||
(distributeʳ⁻¹ ∘ [ (i₁ ∘ g ⁂ id ∘ f) , (i₂ ∘ h ⁂ id ∘ f) ]) ∘ distributeʳ⁻¹ ≈˘⟨ (refl⟩∘⟨ ([]-cong₂ (⁂-cong₂ +₁∘i₁ id-comm) (⁂-cong₂ +₁∘i₂ id-comm))) ⟩∘⟨refl ⟩ | ||
(distributeʳ⁻¹ ∘ [ ((g +₁ h) ∘ i₁ ⁂ f ∘ id) , ((g +₁ h) ∘ i₂ ⁂ f ∘ id) ]) ∘ distributeʳ⁻¹ ≈˘⟨ (refl⟩∘⟨ ([]-cong₂ ⁂∘⁂ ⁂∘⁂)) ⟩∘⟨refl ⟩ | ||
(distributeʳ⁻¹ ∘ [ ((g +₁ h) ⁂ f) ∘ (i₁ ⁂ id) , ((g +₁ h) ⁂ f) ∘ (i₂ ⁂ id) ]) ∘ distributeʳ⁻¹ ≈˘⟨ pullˡ (pullʳ ∘[]) ⟩ | ||
(distributeʳ⁻¹ ∘ ((g +₁ h) ⁂ f)) ∘ distributeʳ ∘ distributeʳ⁻¹ ≈˘⟨ introʳ (IsIso.isoʳ isIsoʳ) ⟩ | ||
distributeʳ⁻¹ ∘ ((g +₁ h) ⁂ f) ∎ | ||
|
||
-- distribute and swap | ||
distributeˡ⁻¹∘swap : ∀ {A B C : Obj} → distributeˡ⁻¹ ∘ swap ≈ (swap +₁ swap) ∘ distributeʳ⁻¹ {A} {B} {C} | ||
distributeˡ⁻¹∘swap = Iso⇒Mono (IsIso.iso isIsoˡ) (distributeˡ⁻¹ ∘ swap) ((swap +₁ swap) ∘ distributeʳ⁻¹) (begin | ||
(distributeˡ ∘ distributeˡ⁻¹ ∘ swap) ≈⟨ cancelˡ (IsIso.isoʳ isIsoˡ) ⟩ | ||
swap ≈˘⟨ cancelʳ (IsIso.isoʳ isIsoʳ) ⟩ | ||
((swap ∘ distributeʳ) ∘ distributeʳ⁻¹) ≈⟨ ∘[] ⟩∘⟨refl ⟩ | ||
[ swap ∘ (i₁ ⁂ id) , swap ∘ (i₂ ⁂ id) ] ∘ distributeʳ⁻¹ ≈˘⟨ []-cong₂ (sym swap∘⁂) (sym swap∘⁂) ⟩∘⟨refl ⟩ | ||
[ (id ⁂ i₁) ∘ swap , (id ⁂ i₂) ∘ swap ] ∘ distributeʳ⁻¹ ≈˘⟨ pullˡ []∘+₁ ⟩ | ||
distributeˡ ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ ∎) | ||
|
||
distributeʳ⁻¹∘swap : ∀ {A B C : Obj} → distributeʳ⁻¹ ∘ swap ≈ (swap +₁ swap) ∘ distributeˡ⁻¹ {A} {B} {C} | ||
distributeʳ⁻¹∘swap = Iso⇒Mono (IsIso.iso isIsoʳ) (distributeʳ⁻¹ ∘ swap) ((swap +₁ swap) ∘ distributeˡ⁻¹) (begin | ||
(distributeʳ ∘ distributeʳ⁻¹ ∘ swap) ≈⟨ cancelˡ (IsIso.isoʳ isIsoʳ) ⟩ | ||
swap ≈˘⟨ cancelʳ (IsIso.isoʳ isIsoˡ) ⟩ | ||
((swap ∘ distributeˡ) ∘ distributeˡ⁻¹) ≈⟨ (∘[] ⟩∘⟨refl) ⟩ | ||
[ swap ∘ (id ⁂ i₁) , swap ∘ (id ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈˘⟨ ([]-cong₂ (sym swap∘⁂) (sym swap∘⁂)) ⟩∘⟨refl ⟩ | ||
[ (i₁ ⁂ id) ∘ swap , (i₂ ⁂ id) ∘ swap ] ∘ distributeˡ⁻¹ ≈˘⟨ pullˡ []∘+₁ ⟩ | ||
(distributeʳ ∘ (swap +₁ swap) ∘ distributeˡ⁻¹) ∎) |