Skip to content

Commit

Permalink
Use sym-associator for Cats and DagCats
Browse files Browse the repository at this point in the history
  • Loading branch information
Taneb committed May 29, 2024
1 parent d6b02c7 commit 23306c7
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 3 deletions.
4 changes: 2 additions & 2 deletions src/Categories/Category/Instance/Cats.agda
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ open import Level
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; id; _∘F_)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; associator; unitorˡ; unitorʳ; unitor²; isEquivalence; _ⓘₕ_; sym)
using (NaturalIsomorphism; associator; sym-associator; unitorˡ; unitorʳ; unitor²; isEquivalence; _ⓘₕ_)
private
variable
o ℓ e : Level
Expand All @@ -24,7 +24,7 @@ Cats o ℓ e = record
; id = id
; _∘_ = _∘F_
; assoc = λ {_ _ _ _ F G H} associator F G H
; sym-assoc = λ {_ _ _ _ F G H} sym (associator F G H)
; sym-assoc = λ {_ _ _ _ F G H} sym-associator F G H
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
Expand Down
2 changes: 1 addition & 1 deletion src/Categories/Category/Instance/DagCats.agda
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ DagCats o ℓ e = record
; id = id
; _∘_ = _∘F†_
; assoc = λ {_ _ _ _ F G H} associator (functor F) (functor G) (functor H)
; sym-assoc = λ {_ _ _ _ F G H} sym (associator (functor F) (functor G) (functor H))
; sym-assoc = λ {_ _ _ _ F G H} sym-associator (functor F) (functor G) (functor H)
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
Expand Down

0 comments on commit 23306c7

Please sign in to comment.