-
Notifications
You must be signed in to change notification settings - Fork 941
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add sklearn template for
flwr new
(#3251)
- Loading branch information
1 parent
995e09f
commit 61ce2eb
Showing
4 changed files
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
94 changes: 94 additions & 0 deletions
94
src/py/flwr/cli/new/templates/app/code/client.sklearn.py.tpl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
"""$project_name: A Flower / Scikit-Learn app.""" | ||
|
||
import warnings | ||
|
||
import numpy as np | ||
from flwr.client import NumPyClient, ClientApp | ||
from flwr_datasets import FederatedDataset | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn.metrics import log_loss | ||
|
||
|
||
def get_model_parameters(model): | ||
if model.fit_intercept: | ||
params = [ | ||
model.coef_, | ||
model.intercept_, | ||
] | ||
else: | ||
params = [model.coef_] | ||
return params | ||
|
||
|
||
def set_model_params(model, params): | ||
model.coef_ = params[0] | ||
if model.fit_intercept: | ||
model.intercept_ = params[1] | ||
return model | ||
|
||
|
||
def set_initial_params(model): | ||
n_classes = 10 # MNIST has 10 classes | ||
n_features = 784 # Number of features in dataset | ||
model.classes_ = np.array([i for i in range(10)]) | ||
|
||
model.coef_ = np.zeros((n_classes, n_features)) | ||
if model.fit_intercept: | ||
model.intercept_ = np.zeros((n_classes,)) | ||
|
||
|
||
class FlowerClient(NumPyClient): | ||
def __init__(self, model, X_train, X_test, y_train, y_test): | ||
self.model = model | ||
self.X_train = X_train | ||
self.X_test = X_test | ||
self.y_train = y_train | ||
self.y_test = y_test | ||
|
||
def get_parameters(self, config): | ||
return get_model_parameters(self.model) | ||
|
||
def fit(self, parameters, config): | ||
set_model_params(self.model, parameters) | ||
|
||
# Ignore convergence failure due to low local epochs | ||
with warnings.catch_warnings(): | ||
warnings.simplefilter("ignore") | ||
self.model.fit(self.X_train, self.y_train) | ||
|
||
return get_model_parameters(self.model), len(self.X_train), {} | ||
|
||
def evaluate(self, parameters, config): | ||
set_model_params(self.model, parameters) | ||
|
||
loss = log_loss(self.y_test, self.model.predict_proba(self.X_test)) | ||
accuracy = self.model.score(self.X_test, self.y_test) | ||
|
||
return loss, len(self.X_test), {"accuracy": accuracy} | ||
|
||
fds = FederatedDataset(dataset="mnist", partitioners={"train": 2}) | ||
|
||
def client_fn(cid: str): | ||
dataset = fds.load_partition(int(cid), "train").with_format("numpy") | ||
|
||
X, y = dataset["image"].reshape((len(dataset), -1)), dataset["label"] | ||
|
||
# Split the on edge data: 80% train, 20% test | ||
X_train, X_test = X[: int(0.8 * len(X))], X[int(0.8 * len(X)) :] | ||
y_train, y_test = y[: int(0.8 * len(y))], y[int(0.8 * len(y)) :] | ||
|
||
# Create LogisticRegression Model | ||
model = LogisticRegression( | ||
penalty="l2", | ||
max_iter=1, # local epoch | ||
warm_start=True, # prevent refreshing weights when fitting | ||
) | ||
|
||
# Setting initial parameters, akin to model.compile for keras models | ||
set_initial_params(model) | ||
|
||
return FlowerClient(model, X_train, X_test, y_train, y_test).to_client() | ||
|
||
|
||
# Flower ClientApp | ||
app = ClientApp(client_fn=client_fn) |
17 changes: 17 additions & 0 deletions
17
src/py/flwr/cli/new/templates/app/code/server.sklearn.py.tpl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
"""$project_name: A Flower / Scikit-Learn app.""" | ||
|
||
from flwr.server import ServerApp, ServerConfig | ||
from flwr.server.strategy import FedAvg | ||
|
||
|
||
strategy = FedAvg( | ||
fraction_fit=1.0, | ||
fraction_evaluate=1.0, | ||
min_available_clients=2, | ||
) | ||
|
||
# Create ServerApp | ||
app = ServerApp( | ||
config=ServerConfig(num_rounds=3), | ||
strategy=strategy, | ||
) |
20 changes: 20 additions & 0 deletions
20
src/py/flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
[build-system] | ||
requires = ["hatchling"] | ||
build-backend = "hatchling.build" | ||
|
||
[project] | ||
name = "$project_name" | ||
version = "1.0.0" | ||
description = "" | ||
authors = [ | ||
{ name = "The Flower Authors", email = "[email protected]" }, | ||
] | ||
license = {text = "Apache License (2.0)"} | ||
dependencies = [ | ||
"flwr[simulation]>=1.8.0,<2.0", | ||
"flwr-datasets[vision]>=0.0.2,<1.0.0", | ||
"scikit-learn>=1.1.1", | ||
] | ||
|
||
[tool.hatch.build.targets.wheel] | ||
packages = ["."] |