Skip to content

Commit

Permalink
Merge branch 'main' into intro-run-mgmt
Browse files Browse the repository at this point in the history
  • Loading branch information
panh99 committed Sep 19, 2024
2 parents 4e67497 + efdb900 commit 37147d5
Show file tree
Hide file tree
Showing 58 changed files with 2,849 additions and 1,138 deletions.
8 changes: 8 additions & 0 deletions .editorconfig
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,14 @@ profile = black
indent_style = space
indent_size = 2

[*.md]
indent_style = space
indent_size = 2

[*.yml]
indent_style = space
indent_size = 2

[*.toml]
indent_style = space
indent_size = 4
21 changes: 11 additions & 10 deletions benchmarks/flowertune-llm/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
![](_static/flower_llm.png)
[![FlowerTune LLM Leaderboard](_static/flower_llm.png)](https://flower.ai/benchmarks/llm-leaderboard)

# FlowerTune LLM Leaderboard

Expand Down Expand Up @@ -27,15 +27,16 @@ flwr new --framework=FlowerTune
The `flwr new` command will generate a directory with the following structure:

```bash
<project-name>
├── README.md # <- Instructions
├── pyproject.toml # <- Environment dependencies and configs
└── <project_name>
├── client_app.py # <- Flower ClientApp build
├── dataset.py # <- Dataset and tokenizer build
├── models.py # <- Model build
├── server_app.py # <- Flower ServerApp build
└── strategy.py # <- Flower strategy build
<project_name>
├── README.md # Instructions
├── pyproject.toml # Environment dependencies and configs
└── <project_name>
├── __init__.py
├── client_app.py # Flower ClientApp build
├── dataset.py # Dataset and tokenizer build
├── models.py # Model build
├── server_app.py # Flower ServerApp build
└── strategy.py # Flower strategy build
```

This can serve as the starting point for you to build up your own federated LLM fine-tuning methods.
Expand Down
2 changes: 1 addition & 1 deletion benchmarks/flowertune-llm/evaluation/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ If you are participating [LLM Leaderboard](https://flower.ai/benchmarks/llm-lead

## How to run

Navigate to the directory corresponding to your selected challenge (`general NLP`, `finance`, `medical`, or `code`) and follow the instructions there to execute the evaluation.
Navigate to the directory corresponding to your selected challenge ([`general NLP`](https://github.com/adap/flower/tree/main/benchmarks/flowertune-llm/evaluation/general-nlp), [`finance`](https://github.com/adap/flower/tree/main/benchmarks/flowertune-llm/evaluation/finance), [`medical`](https://github.com/adap/flower/tree/main/benchmarks/flowertune-llm/evaluation/medical), or [`code`](https://github.com/adap/flower/tree/main/benchmarks/flowertune-llm/evaluation/code)) and follow the instructions there to execute the evaluation.

> [!NOTE]
> If you wish to participate in the LLM Leaderboard, you must not modify the evaluation code and should use the exact command provided in the respective directory to run the evaluation.
Expand Down
2 changes: 2 additions & 0 deletions datasets/flwr_datasets/partitioner/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from .partitioner import Partitioner
from .pathological_partitioner import PathologicalPartitioner
from .shard_partitioner import ShardPartitioner
from .size_partitioner import SizePartitioner
from .square_partitioner import SquarePartitioner

__all__ = [
Expand All @@ -42,5 +43,6 @@
"Partitioner",
"PathologicalPartitioner",
"ShardPartitioner",
"SizePartitioner",
"SquarePartitioner",
]
128 changes: 128 additions & 0 deletions datasets/flwr_datasets/partitioner/size_partitioner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
# Copyright 2024 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SizePartitioner class."""


import warnings
from collections.abc import Sequence

import datasets
from flwr_datasets.partitioner.partitioner import Partitioner


class SizePartitioner(Partitioner):
"""Partitioner that creates each partition with the size specified by a user.
Parameters
----------
partition_sizes : Sequence[int]
The size of each partition. partition_id 0 will have partition_sizes[0]
samples, partition_id 1 will have partition_sizes[1] samples, etc.
Examples
--------
>>> from flwr_datasets import FederatedDataset
>>> from flwr_datasets.partitioner import SizePartitioner
>>>
>>> partition_sizes = [15_000, 5_000, 30_000]
>>> partitioner = SizePartitioner(partition_sizes)
>>> fds = FederatedDataset(dataset="cifar10", partitioners={"train": partitioner})
"""

def __init__(self, partition_sizes: Sequence[int]) -> None:
super().__init__()
self._pre_ds_validate_partition_sizes(partition_sizes)
self._partition_sizes = partition_sizes
self._partition_id_to_indices: dict[int, list[int]] = {}
self._partition_id_to_indices_determined = False

def load_partition(self, partition_id: int) -> datasets.Dataset:
"""Load a single partition of the size of partition_sizes[partition_id].
For example if given partition_sizes=[20_000, 10_000, 30_000],
then partition_id=0 will return a partition of size 20_000,
partition_id=1 will return a partition of size 10_000, etc.
Parameters
----------
partition_id : int
The index that corresponds to the requested partition.
Returns
-------
dataset_partition : Dataset
Single dataset partition.
"""
self._determine_partition_id_to_indices_if_needed()
return self.dataset.select(self._partition_id_to_indices[partition_id])

@property
def num_partitions(self) -> int:
"""Total number of partitions."""
self._determine_partition_id_to_indices_if_needed()
return len(self._partition_sizes)

@property
def partition_id_to_indices(self) -> dict[int, list[int]]:
"""Partition id to indices (the result of partitioning)."""
self._determine_partition_id_to_indices_if_needed()
return self._partition_id_to_indices

def _determine_partition_id_to_indices_if_needed(
self,
) -> None:
"""Create an assignment of indices to the partition indices."""
if self._partition_id_to_indices_determined:
return
self._post_ds_validate_partition_sizes()
start = 0
end = 0
for partition_id, partition_size in enumerate(self._partition_sizes):
end += partition_size
indices = list(range(start, end))
self._partition_id_to_indices[partition_id] = indices
start = end
self._partition_id_to_indices_determined = True

def _pre_ds_validate_partition_sizes(self, partition_sizes: Sequence[int]) -> None:
"""Check if the partition sizes are valid (no information about the dataset)."""
if not isinstance(partition_sizes, Sequence):
raise ValueError("Partition sizes must be a sequence.")
if len(partition_sizes) == 0:
raise ValueError("Partition sizes must not be empty.")
if not all(
isinstance(partition_size, int) for partition_size in partition_sizes
):
raise ValueError("All partition sizes must be integers.")
if not all(partition_size > 0 for partition_size in partition_sizes):
raise ValueError("All partition sizes must be greater than zero.")

def _post_ds_validate_partition_sizes(self) -> None:
"""Validate the partition sizes against the dataset size."""
desired_partition_sizes = sum(self._partition_sizes)
dataset_size = len(self.dataset)
if desired_partition_sizes > dataset_size:
raise ValueError(
f"The sum of partition sizes sum({self._partition_sizes})"
f"= {desired_partition_sizes} is greater than the size of"
f" the dataset {dataset_size}."
)
if desired_partition_sizes < dataset_size:
warnings.warn(
f"The sum of partition sizes is {desired_partition_sizes}, which is"
f"smaller than the size of the dataset: {dataset_size}. "
f"Ignore this warning if it is the desired behavior.",
stacklevel=1,
)
Loading

0 comments on commit 37147d5

Please sign in to comment.