Skip to content

A Helm chart to install Apache Airflow on Kubernetes

License

Notifications You must be signed in to change notification settings

abhaypartap/airflow-chart

 
 

Repository files navigation

Astronomer's Helm Chart for Apache Airflow

This chart will bootstrap an Airflow deployment on a Kubernetes cluster using the Helm package manager.

Quickstart

To install this helm chart remotely (using helm 3)

kubectl create namespace airflow

helm repo add astronomer https://helm.astronomer.io
helm install airflow --namespace airflow astronomer/airflow

To install airflow with the KEDA autoscaler

helm repo add kedacore https://kedacore.github.io/charts
helm repo add astronomer https://helm.astronomer.io

helm repo update

kubectl create namespace keda
helm install keda \
    --namespace keda kedacore/keda

kubectl create namespace airflow

helm install airflow \
    --set executor=CeleryExecutor \
    --set workers.keda.enabled=true \
    --set workers.persistence.enabled=false \
    --namespace airflow \
    astronomer/airflow

To install this repository from source

kubectl create namespace airflow
helm install --namespace airflow .

Prerequisites

  • Kubernetes 1.12+
  • Helm 2.11+ or Helm 3.0+
  • PV provisioner support in the underlying infrastructure

Installing the Chart

To install the chart with the release name my-release:

helm install --name my-release .

The command deploys Airflow on the Kubernetes cluster in the default configuration. The Parameters section lists the parameters that can be configured during installation.

Tip: List all releases using helm list

Upgrading the Chart

To upgrade the chart with the release name my-release:

helm upgrade --name my-release .

Uninstalling the Chart

To uninstall/delete the my-release deployment:

helm delete my-release

The command removes all the Kubernetes components associated with the chart and deletes the release.

Updating DAGs

The recommended way to update your DAGs with this chart is to build a new docker image with the latest code (docker build -t my-company/airflow:8a0da78 .), push it to an accessible registry (docker push my-company/airflow:8a0da78), then update the Airflow pods with that image:

helm upgrade my-release . \
  --set images.airflow.repository=my-company/airflow \
  --set images.airflow.tag=8a0da78

Docker Images

Parameters

The following tables lists the configurable parameters of the Airflow chart and their default values.

Parameter Description Default
uid UID to run airflow pods under nil
gid GID to run airflow pods under nil
nodeSelector Node labels for pod assignment {}
affinity Affinity labels for pod assignment {}
tolerations Toleration labels for pod assignment []
labels Common labels to add to all objects defined in this chart {}
privateRegistry.enabled Enable usage of a private registry for Airflow base image false
privateRegistry.repository Repository where base image lives (eg: quay.io) ~
ingress.enabled Enable Kubernetes Ingress support false
ingress.acme Add acme annotations to Ingress object false
ingress.tlsSecretName Name of secret that contains a TLS secret ~
ingress.webserverAnnotations Annotations added to Webserver Ingress object {}
ingress.flowerAnnotations Annotations added to Flower Ingress object {}
ingress.baseDomain Base domain for VHOSTs ~
ingress.auth.enabled Enable auth with Astronomer Platform true
networkPolicies.enabled Enable Network Policies to restrict traffic true
airflowHome Location of airflow home directory /usr/local/airflow
rbacEnabled Deploy pods with Kubernetes RBAC enabled true
airflowVersion Default Airflow image version 1.10.5
executor Airflow executor (eg SequentialExecutor, LocalExecutor, CeleryExecutor, KubernetesExecutor) KubernetesExecutor
allowPodLaunching Allow airflow pods to talk to Kubernetes API to launch more pods true
defaultAirflowRepository Fallback docker repository to pull airflow image from quay.io/astronomer/ap-airflow
defaultAirflowTag Fallback docker image tag to deploy. This image is also used to Run Database Migrations for Airflow. 1.10.7-alpine3.10
images.airflow.repository Docker repository to pull image from. Update this to deploy a custom image quay.io/astronomer/ap-airflow
images.airflow.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.airflow.pullPolicy PullPolicy for airflow image IfNotPresent
images.flower.repository Docker repository to pull image from. Update this to deploy a custom image quay.io/astronomer/ap-airflow
images.flower.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.flower.pullPolicy PullPolicy for flower image IfNotPresent
images.statsd.repository Docker repository to pull image from. Update this to deploy a custom image quay.io/astronomer/ap-statsd-exporter
images.statsd.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.statsd.pullPolicy PullPolicy for statsd-exporter image IfNotPresent
images.redis.repository Docker repository to pull image from. Update this to deploy a custom image quay.io/astronomer/ap-redis
images.redis.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.redis.pullPolicy PullPolicy for redis image IfNotPresent
images.pgbouncer.repository Docker repository to pull image from. Update this to deploy a custom image quay.io/astronomer/ap-pgbouncer
images.pgbouncer.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.pgbouncer.pullPolicy PullPolicy for pgbouncer image IfNotPresent
images.pgbouncerExporter.repository Docker repository to pull image from. Update this to deploy a custom image quay.io/astronomer/ap-pgbouncer-exporter
images.pgbouncerExporter.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.pgbouncerExporter.pullPolicy PullPolicy for pgbouncer-exporter image IfNotPresent
env Environment variables key/values to mount into Airflow pods []
secret Secret name/key pairs to mount into Airflow pods []
data.metadataSecretName Secret name to mount Airflow connection string from ~
data.resultBackendSecretName Secret name to mount Celery result backend connection string from ~
data.metadataConection Field separated connection data (alternative to secret name) {}
data.resultBackendConnection Field separated connection data (alternative to secret name) {}
fernetKey String representing an Airflow fernet key ~
fernetKeySecretName Secret name for Airflow fernet key ~
workers.replicas Replica count for Celery workers (if applicable) 1
workers.keda.enabled Enable KEDA autoscaling features false
workers.keda.pollingInverval How often KEDA should poll the backend database for metrics in seconds 5
workers.keda.cooldownPeriod How often KEDA should wait before scaling down in seconds 30
workers.keda.maxReplicaCount Maximum number of Celery workers KEDA can scale to 10
workers.persistence.enabled Enable log persistence in workers via StatefulSet false
workers.persistence.size Size of worker volumes if enabled 100Gi
workers.persistence.storageClassName StorageClass worker volumes should use if enabled default
workers.resources.limits.cpu CPU Limit of workers ~
workers.resources.limits.memory Memory Limit of workers ~
workers.resources.requests.cpu CPU Request of workers ~
workers.resources.requests.memory Memory Request of workers ~
workers.terminationGracePeriodSeconds How long Kubernetes should wait for Celery workers to gracefully drain before force killing 600
workers.autoscaling.enabled Traditional HorizontalPodAutoscaler false
workers.autoscaling.minReplicas Minimum amount of workers 1
workers.autoscaling.maxReplicas Maximum amount of workers 10
workers.targetCPUUtilization Target CPU Utilization of workers 80
workers.targetMemoryUtilization Target Memory Utilization of workers 80
workers.safeToEvict Allow Kubernetes to evict worker pods if needed (node downscaling) true
scheduler.podDisruptionBudget.enabled Enable PDB on Airflow scheduler false
scheduler.podDisruptionBudget.config.maxUnavailable MaxUnavailable pods for scheduler 1
scheduler.resources.limits.cpu CPU Limit of scheduler ~
scheduler.resources.limits.memory Memory Limit of scheduler ~
scheduler.resources.requests.cpu CPU Request of scheduler ~
scheduler.resources.requests.memory Memory Request of scheduler ~
scheduler.airflowLocalSettings Custom Airflow local settings python file ~
scheduler.safeToEvict Allow Kubernetes to evict scheduler pods if needed (node downscaling) true
webserver.livenessProbe.initialDelaySeconds Webserver LivenessProbe initial delay 15
webserver.livenessProbe.timeoutSeconds Webserver LivenessProbe timeout seconds 30
webserver.livenessProbe.failureThreshold Webserver LivenessProbe failure threshold 20
webserver.livenessProbe.periodSeconds Webserver LivenessProbe period seconds 5
webserver.readinessProbe.initialDelaySeconds Webserver ReadinessProbe initial delay 15
webserver.readinessProbe.timeoutSeconds Webserver ReadinessProbe timeout seconds 30
webserver.readinessProbe.failureThreshold Webserver ReadinessProbe failure threshold 20
webserver.readinessProbe.periodSeconds Webserver ReadinessProbe period seconds 5
webserver.replicas How many Airflow webserver replicas should run 1
webserver.resources.limits.cpu CPU Limit of webserver ~
webserver.resources.limits.memory Memory Limit of webserver ~
webserver.resources.requests.cpu CPU Request of webserver ~
webserver.resources.requests.memory Memory Request of webserver ~
webserver.jwtSigningCertificateSecretName Name of secret to mount Airflow Webserver JWT singing certificate from ~
webserver.defaultUser Optional default airflow user information {}
webserver.useDefaultAirflowImage Prevent Airflow webserver reboot only for Airflow 2.0.0 false

Specify each parameter using the --set key=value[,key=value] argument to helm install. For example,

helm install --name my-release \
  --set executor=CeleryExecutor \
  --set enablePodLaunching=false .

Autoscaling with KEDA

KEDA stands for Kubernetes Event Driven Autoscaling. KEDA is a custom controller that allows users to create custom bindings to the Kubernetes Horizontal Pod Autoscaler. We've built an experimental scaler that allows users to create scalers based on postgreSQL queries. For the moment this exists on a separate branch, but will be merged upstream soon. To install our custom version of KEDA on your cluster, please run

helm repo add kedacore https://kedacore.github.io/charts

helm repo update

helm install \
    --set image.keda=docker.io/kedacore/keda:1.2.0 \
    --set image.metricsAdapter=docker.io/kedacore/keda-metrics-adapter:1.2.0 \
    --namespace keda --name keda kedacore/keda

Once KEDA is installed (which should be pretty quick since there is only one pod). You can try out KEDA autoscaling on this chart by setting workers.keda.enabled=true your helm command or in the values.yaml. (Note: KEDA does not support StatefulSets so you need to set worker.persistence.enabled to false)

helm repo add astronomer https://helm.astronomer.io
helm repo update

kubectl create namespace airflow

helm install airflow \
    --set executor=CeleryExecutor \
    --set workers.keda.enabled=true \
    --set workers.persistence.enabled=false \
    --namespace airflow \
    astronomer/airflow

Walkthrough using kind

Install kind, and create a cluster:

We recommend testing with Kubernetes 1.15, as this image doesn't support Kubernetes 1.16+ for CeleryExecutor presently.

kind create cluster \
  --image kindest/node:v1.15.7@sha256:e2df133f80ef633c53c0200114fce2ed5e1f6947477dbc83261a6a921169488d

Confirm it's up:

kubectl cluster-info --context kind-kind

Add Astronomer's Helm repo:

helm repo add astronomer https://helm.astronomer.io
helm repo update

Create namespace + install the chart:

kubectl create namespace airflow
helm install airflow -n airflow astronomer/airflow

It may take a few minutes. Confirm the pods are up:

kubectl get pods --all-namespaces
helm list -n airflow

Run kubectl port-forward svc/airflow-webserver 8080:8080 -n airflow to port-forward the Airflow UI to http://localhost:8080/ to confirm Airflow is working.

Build a Docker image from your DAGs:

  1. Start a project using astro-cli, which will generate a Dockerfile, and load your DAGs in. You can test locally before pushing to kind with astro airflow start.

     mkdir my-airflow-project && cd my-airflow-project
     astro dev init
    
  2. Then build the image:

     docker build -t my-dags:0.0.1 .
    
  3. Load the image into kind:

     kind load docker-image my-dags:0.0.1
    
  4. Upgrade Helm deployment:

     helm upgrade airflow -n airflow \
         --set images.airflow.repository=my-dags \
         --set images.airflow.tag=0.0.1 \
         astronomer/airflow
    

Contributing

Check out our contributing guide!

License

Apache 2.0 with Commons Clause

About

A Helm chart to install Apache Airflow on Kubernetes

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Shell 57.9%
  • Python 42.1%