Skip to content

TypeScript Model Context Protocol (MCP) server boilerplate providing IP lookup tools/resources. Includes CLI support and extensible structure for connecting AI systems (LLMs) to external data sources like ip-api.com. Ideal template for creating new MCP integrations via Node.js.

Notifications You must be signed in to change notification settings

aashari/boilerplate-mcp-server

Repository files navigation

Boilerplate MCP Server

A foundation for developing custom Model Context Protocol (MCP) servers in TypeScript. Provides a complete layered architecture pattern, working example tools, and developer infrastructure to connect AI assistants with external APIs and data sources.

NPM Version Build Status TypeScript License: ISC

Why Use This Boilerplate?

  • Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clean separation between CLI, tools, controllers, and services
  • Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability
  • Working Example: Includes fully implemented tools demonstrating the complete pattern from CLI to API integration
  • Testing Framework: Ready-to-use testing infrastructure for unit and CLI integration tests, with coverage reporting
  • Complete Developer Tooling: Pre-configured ESLint, Prettier, TypeScript, and CI/CD workflows

What is MCP?

Model Context Protocol (MCP) is an open standard for securely connecting AI systems to external tools and data sources. This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.

Prerequisites

  • Node.js (>=18.x): Download
  • Git: For version control

Quick Start

# Clone the repository
git clone https://github.com/aashari/boilerplate-mcp-server.git
cd boilerplate-mcp-server

# Install dependencies
npm install

# Start development server
npm run dev:server

# Try the example tool
npm run dev:cli -- get-ip-details 8.8.8.8

Architecture Overview

Project Structure (Click to expand)
src/
├── cli/              # Command-line interfaces
│   ├── index.ts      # CLI entry point
│   └── *.cli.ts      # Feature-specific CLI modules
├── controllers/      # Business logic
│   └── *.controller.ts  # Feature controllers
├── services/         # External API interactions
│   └── *.service.ts  # Service modules
├── tools/            # MCP tool definitions
│   ├── *.tool.ts     # Tool implementations
│   └── *.types.ts    # Tool argument schemas
├── types/            # Type definitions
│   └── common.types.ts # Shared type definitions
├── utils/            # Shared utilities
│   ├── logger.util.ts  # Structured logging
│   ├── error.util.ts   # Error handling
│   └── ...           # Other utility modules
└── index.ts          # Server entry point

Layered Architecture

The boilerplate follows a clean, layered architecture that promotes maintainability and clear separation of concerns:

1. CLI Layer (src/cli/*.cli.ts)

  • Purpose: Command-line interfaces that parse arguments and call controllers
  • Pattern: Use commander for argument parsing, call controllers, handle errors with handleCliError
  • Naming: <feature>.cli.ts

2. Tools Layer (src/tools/*.tool.ts)

  • Purpose: MCP tool definitions exposed to AI assistants
  • Pattern: Use zod for schema validation, call controllers, format responses for MCP
  • Naming: <feature>.tool.ts with types in <feature>.types.ts

3. Controllers Layer (src/controllers/*.controller.ts)

  • Purpose: Business logic orchestration, error handling, response formatting
  • Pattern: Return standardized ControllerResponse objects, throw errors with context
  • Naming: <feature>.controller.ts with optional <feature>.formatter.ts

4. Services Layer (src/services/*.service.ts)

  • Purpose: External API interactions and data handling
  • Pattern: Pure API calls with minimal logic, return raw data
  • Naming: <feature>.service.ts or vendor.<vendor>.<feature>.service.ts

5. Utils Layer (src/utils/*.util.ts)

  • Purpose: Shared functionality across the application
  • Key Utils: Logging, error handling, formatting, configuration

Developer Guide

Development Scripts

# Start server in dev mode with hot-reload & inspector
npm run dev:server

# Run CLI commands in development
npm run dev:cli -- [command] [args]

# Build the project
npm run build

# Production server
npm start
npm run start:server

# Production CLI
npm run start:cli -- [command] [args]

# Testing
npm test                    # Run all tests
npm test -- src/path/to/test.ts  # Run specific tests
npm run test:coverage       # Generate coverage report

# Code Quality
npm run lint                # Run ESLint
npm run format              # Format with Prettier
npm run typecheck           # Check TypeScript types

Debugging Tools

  • MCP Inspector: Visual tool for testing your MCP tools

  • Server Logs: Enable with DEBUG=true npm run dev:server or in config

Configuration (Click to expand)

Create ~/.mcp/configs.json:

{
  "boilerplate": {
    "environments": {
      "DEBUG": "true",
      "ANY_OTHER_CONFIG": "value"
    }
  }
}

Building Custom Tools

Step-by-Step Tool Implementation Guide (Click to expand)

1. Define Service Layer

Create a new service in src/services/ to interact with your external API:

// src/services/example.service.ts
import { Logger } from '../utils/logger.util.js';

const logger = Logger.forContext('services/example.service.ts');

export async function getData(param: string): Promise<any> {
	logger.debug('Getting data', { param });
	// API interaction code here
	return { result: 'example data' };
}

2. Create Controller

Add a controller in src/controllers/ to handle business logic:

// src/controllers/example.controller.ts
import { Logger } from '../utils/logger.util.js';
import * as exampleService from '../services/example.service.js';
import { formatMarkdown } from '../utils/formatter.util.js';
import { handleControllerError } from '../utils/error-handler.util.js';
import { ControllerResponse } from '../types/common.types.js';

const logger = Logger.forContext('controllers/example.controller.ts');

export interface GetDataOptions {
	param?: string;
}

export async function getData(
	options: GetDataOptions = {},
): Promise<ControllerResponse> {
	try {
		logger.debug('Getting data with options', options);

		const data = await exampleService.getData(options.param || 'default');

		const content = formatMarkdown(data);

		return { content };
	} catch (error) {
		throw handleControllerError(error, {
			entityType: 'ExampleData',
			operation: 'getData',
			source: 'controllers/example.controller.ts',
		});
	}
}

3. Implement MCP Tool

Create a tool definition in src/tools/:

// src/tools/example.tool.ts
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { Logger } from '../utils/logger.util.js';
import { formatErrorForMcpTool } from '../utils/error.util.js';
import * as exampleController from '../controllers/example.controller.js';

const logger = Logger.forContext('tools/example.tool.ts');

const GetDataArgs = z.object({
	param: z.string().optional().describe('Optional parameter'),
});

type GetDataArgsType = z.infer<typeof GetDataArgs>;

async function handleGetData(args: GetDataArgsType) {
	try {
		logger.debug('Tool get_data called', args);

		const result = await exampleController.getData({
			param: args.param,
		});

		return {
			content: [{ type: 'text' as const, text: result.content }],
		};
	} catch (error) {
		logger.error('Tool get_data failed', error);
		return formatErrorForMcpTool(error);
	}
}

export function register(server: McpServer) {
	server.tool(
		'get_data',
		`Gets data from the example API, optionally using \`param\`.
Use this to fetch example data. Returns formatted data as Markdown.`,
		GetDataArgs.shape,
		handleGetData,
	);
}

4. Add CLI Support

Create a CLI command in src/cli/:

// src/cli/example.cli.ts
import { program } from 'commander';
import { Logger } from '../utils/logger.util.js';
import * as exampleController from '../controllers/example.controller.js';
import { handleCliError } from '../utils/error-handler.util.js';

const logger = Logger.forContext('cli/example.cli.ts');

program
	.command('get-data')
	.description('Get example data')
	.option('--param <value>', 'Optional parameter')
	.action(async (options) => {
		try {
			logger.debug('CLI get-data called', options);

			const result = await exampleController.getData({
				param: options.param,
			});

			console.log(result.content);
		} catch (error) {
			handleCliError(error);
		}
	});

5. Register Components

Update the entry points to register your new components:

// In src/cli/index.ts
import '../cli/example.cli.js';

// In src/index.ts (for the tool)
import exampleTool from './tools/example.tool.js';
// Then in registerTools function:
exampleTool.register(server);

Publishing Your MCP Server

  1. Update package.json with your details:

    {
      "name": "your-mcp-server-name",
      "version": "1.0.0",
      "description": "Your custom MCP server",
      "author": "Your Name",
      // Other fields...
    }
  2. Update README.md with your tool documentation

  3. Build: npm run build

  4. Test: npm run start:server

  5. Publish: npm publish

Testing Best Practices

  • Unit Tests: Test utils and pure functions in isolation
  • Controller Tests: Test business logic with mocked service calls
  • Integration Tests: Test CLI with real dependencies
  • Coverage Goal: Aim for >80% test coverage

License

ISC License

Resources

About

TypeScript Model Context Protocol (MCP) server boilerplate providing IP lookup tools/resources. Includes CLI support and extensible structure for connecting AI systems (LLMs) to external data sources like ip-api.com. Ideal template for creating new MCP integrations via Node.js.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •