A foundation for developing custom Model Context Protocol (MCP) servers in TypeScript. Provides a complete layered architecture pattern, working example tools, and developer infrastructure to connect AI assistants with external APIs and data sources.
- Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clean separation between CLI, tools, controllers, and services
- Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability
- Working Example: Includes fully implemented tools demonstrating the complete pattern from CLI to API integration
- Testing Framework: Ready-to-use testing infrastructure for unit and CLI integration tests, with coverage reporting
- Complete Developer Tooling: Pre-configured ESLint, Prettier, TypeScript, and CI/CD workflows
Model Context Protocol (MCP) is an open standard for securely connecting AI systems to external tools and data sources. This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.
- Node.js (>=18.x): Download
- Git: For version control
# Clone the repository
git clone https://github.com/aashari/boilerplate-mcp-server.git
cd boilerplate-mcp-server
# Install dependencies
npm install
# Start development server
npm run dev:server
# Try the example tool
npm run dev:cli -- get-ip-details 8.8.8.8
Project Structure (Click to expand)
src/
├── cli/ # Command-line interfaces
│ ├── index.ts # CLI entry point
│ └── *.cli.ts # Feature-specific CLI modules
├── controllers/ # Business logic
│ └── *.controller.ts # Feature controllers
├── services/ # External API interactions
│ └── *.service.ts # Service modules
├── tools/ # MCP tool definitions
│ ├── *.tool.ts # Tool implementations
│ └── *.types.ts # Tool argument schemas
├── types/ # Type definitions
│ └── common.types.ts # Shared type definitions
├── utils/ # Shared utilities
│ ├── logger.util.ts # Structured logging
│ ├── error.util.ts # Error handling
│ └── ... # Other utility modules
└── index.ts # Server entry point
The boilerplate follows a clean, layered architecture that promotes maintainability and clear separation of concerns:
- Purpose: Command-line interfaces that parse arguments and call controllers
- Pattern: Use
commander
for argument parsing, call controllers, handle errors withhandleCliError
- Naming:
<feature>.cli.ts
- Purpose: MCP tool definitions exposed to AI assistants
- Pattern: Use
zod
for schema validation, call controllers, format responses for MCP - Naming:
<feature>.tool.ts
with types in<feature>.types.ts
- Purpose: Business logic orchestration, error handling, response formatting
- Pattern: Return standardized
ControllerResponse
objects, throw errors with context - Naming:
<feature>.controller.ts
with optional<feature>.formatter.ts
- Purpose: External API interactions and data handling
- Pattern: Pure API calls with minimal logic, return raw data
- Naming:
<feature>.service.ts
orvendor.<vendor>.<feature>.service.ts
- Purpose: Shared functionality across the application
- Key Utils: Logging, error handling, formatting, configuration
# Start server in dev mode with hot-reload & inspector
npm run dev:server
# Run CLI commands in development
npm run dev:cli -- [command] [args]
# Build the project
npm run build
# Production server
npm start
npm run start:server
# Production CLI
npm run start:cli -- [command] [args]
# Testing
npm test # Run all tests
npm test -- src/path/to/test.ts # Run specific tests
npm run test:coverage # Generate coverage report
# Code Quality
npm run lint # Run ESLint
npm run format # Format with Prettier
npm run typecheck # Check TypeScript types
-
MCP Inspector: Visual tool for testing your MCP tools
- Run server with
npm run dev:server
- Open http://localhost:5173 in your browser
- Run server with
-
Server Logs: Enable with
DEBUG=true npm run dev:server
or in config
Configuration (Click to expand)
Create ~/.mcp/configs.json
:
{
"boilerplate": {
"environments": {
"DEBUG": "true",
"ANY_OTHER_CONFIG": "value"
}
}
}
Step-by-Step Tool Implementation Guide (Click to expand)
Create a new service in src/services/
to interact with your external API:
// src/services/example.service.ts
import { Logger } from '../utils/logger.util.js';
const logger = Logger.forContext('services/example.service.ts');
export async function getData(param: string): Promise<any> {
logger.debug('Getting data', { param });
// API interaction code here
return { result: 'example data' };
}
Add a controller in src/controllers/
to handle business logic:
// src/controllers/example.controller.ts
import { Logger } from '../utils/logger.util.js';
import * as exampleService from '../services/example.service.js';
import { formatMarkdown } from '../utils/formatter.util.js';
import { handleControllerError } from '../utils/error-handler.util.js';
import { ControllerResponse } from '../types/common.types.js';
const logger = Logger.forContext('controllers/example.controller.ts');
export interface GetDataOptions {
param?: string;
}
export async function getData(
options: GetDataOptions = {},
): Promise<ControllerResponse> {
try {
logger.debug('Getting data with options', options);
const data = await exampleService.getData(options.param || 'default');
const content = formatMarkdown(data);
return { content };
} catch (error) {
throw handleControllerError(error, {
entityType: 'ExampleData',
operation: 'getData',
source: 'controllers/example.controller.ts',
});
}
}
Create a tool definition in src/tools/
:
// src/tools/example.tool.ts
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { Logger } from '../utils/logger.util.js';
import { formatErrorForMcpTool } from '../utils/error.util.js';
import * as exampleController from '../controllers/example.controller.js';
const logger = Logger.forContext('tools/example.tool.ts');
const GetDataArgs = z.object({
param: z.string().optional().describe('Optional parameter'),
});
type GetDataArgsType = z.infer<typeof GetDataArgs>;
async function handleGetData(args: GetDataArgsType) {
try {
logger.debug('Tool get_data called', args);
const result = await exampleController.getData({
param: args.param,
});
return {
content: [{ type: 'text' as const, text: result.content }],
};
} catch (error) {
logger.error('Tool get_data failed', error);
return formatErrorForMcpTool(error);
}
}
export function register(server: McpServer) {
server.tool(
'get_data',
`Gets data from the example API, optionally using \`param\`.
Use this to fetch example data. Returns formatted data as Markdown.`,
GetDataArgs.shape,
handleGetData,
);
}
Create a CLI command in src/cli/
:
// src/cli/example.cli.ts
import { program } from 'commander';
import { Logger } from '../utils/logger.util.js';
import * as exampleController from '../controllers/example.controller.js';
import { handleCliError } from '../utils/error-handler.util.js';
const logger = Logger.forContext('cli/example.cli.ts');
program
.command('get-data')
.description('Get example data')
.option('--param <value>', 'Optional parameter')
.action(async (options) => {
try {
logger.debug('CLI get-data called', options);
const result = await exampleController.getData({
param: options.param,
});
console.log(result.content);
} catch (error) {
handleCliError(error);
}
});
Update the entry points to register your new components:
// In src/cli/index.ts
import '../cli/example.cli.js';
// In src/index.ts (for the tool)
import exampleTool from './tools/example.tool.js';
// Then in registerTools function:
exampleTool.register(server);
-
Update package.json with your details:
{ "name": "your-mcp-server-name", "version": "1.0.0", "description": "Your custom MCP server", "author": "Your Name", // Other fields... }
-
Update README.md with your tool documentation
-
Build:
npm run build
-
Test:
npm run start:server
-
Publish:
npm publish
- Unit Tests: Test utils and pure functions in isolation
- Controller Tests: Test business logic with mocked service calls
- Integration Tests: Test CLI with real dependencies
- Coverage Goal: Aim for >80% test coverage