This repository includes deep-learning methods for obtaining slow collective variables (CVs) for biomolecules. The included methods are following:
Method | Reference |
---|---|
TAE | Wehmeyer, C.; Noé, F. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 2018, 148, 241703. |
TVAE | Hoffmann, M.; Scherer, M. K.; Hempel, T.; Mardt, A.; de Silva, B.; Husic, B. E.; Klus, S.; Wu, H.; Kutz, J. N.; Brunton, S.; Noé, F. Deeptime: a Python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology 2021. |
VDE | Hernándeza, C. X.; Wayment-Steele, H. K.; Sultan, M. M.; Husic, B. E.; Pande, V. S. Variational encoding of complex dynamics. Phys. Rev. E 2018, 97, 062412. |
SRV | Chen, W.; Sidky, H.; Ferguson, A. L. Nonlinear Discovery of Slow Molecular Modes using State-Free Reversible VAMPnets J. Chem. Phys. 2019, 150, 214114. |
tsVAE (ours) | Ishizone, T.; Matsunaga, Y.; Fuchigami, S.; Nakamura, K. Representation of Protein Dynamics Disentangled by Time-Structure-Based Prior. J. Chem. Theory Comput. 2023, 20, 1, 436--450 |
tsTVAE (ours) | Ishizone, T.; Matsunaga, Y.; Fuchigami, S.; Nakamura, K. Representation of Protein Dynamics Disentangled by Time-Structure-Based Prior. J. Chem. Theory Comput. 2023, 20, 1, 436--450 |
We use following environment:
- numpy 1.19.5
- msmbuilder 3.8.0
- torch 1.10.1
- mdshare 0.4.2 (optional for fetching data)
- pyemma 2.5.7 (optional for MSM analysis)
- matplotlib 3.3.4 (optional for graphics)
- scikit-learn 0.18 (optional for preprocessing)
- scipy 1.2.1 (used in SRV, tsVAE, and tsTVAE)
You can use deep-learning methods by
import models
m = models.tsTVAE(input_dim=30, lagtime=1, n_epochs=10, latent_dim=2)
embed = m.fit_transform(data)
The example of the application is shown in example.ipynb
.
If you use this code in your work, please cite:
@article{tsvae,
title = {Representation of Protein Dynamics Disentangled by Time-Structure-Based Prior},
author = {Ishizone, Tsuyoshi and Matsunaga, Yasuhiro and Fuchigami, Sotaro and Nakamura, Kazuyuki},
journal = {J. Chem. Theory Comput.},
volume = {20},
issue = {1},
pages = {436--450},
numpages = {15},
year = {2024},
month = {1},
publisher = {American Chemical Society},
url = {https://pubs.acs.org/doi/full/10.1021/acs.jctc.3c01025}
}