Skip to content

[ECCV 2024 Workshop🎈] The first agriculture benchmark to evaluate MM-LLMs.

License

Notifications You must be signed in to change notification settings

Yutong-Zhou-cv/AgriBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 

Repository files navigation

Figure start

AgriBench: A Hierarchical Agriculture Benchmark for Multimodal Large Language Models

Dataset Download Paper Download Hits

Contents

To Do

    • Public MM-LUCAS dataset and update initial repo.
    • Add quantitative evaluation results.
    • Add Leaderboard.

News

Overview

AgriBench: the first agriculture benchmark designed to evaluate MultiModal Large Language Models (MM-LLMs) for agriculture applications.

MM-LUCAS: includes 1,784 landscape images, segmentation masks, depth maps, and detailed annotations (geographical location, country, date, land cover and land use taxonomic details, quality scores, aesthetic scores), based on the Land Use/Cover Area Frame Survey (LUCAS).

The 5 Levels Evaluation Strategy

MM-LUCAS Dataset

Content Size Files Format Details
🍀MM-LUCAS - 7,141 Main Folder
├  1_images 877 MB 1,784 JPG Scenery images (1600×1200 pixels) <Ref>
├  2_seg 18.0 MB 1,784 PNG Segmentation masks <Ref>
├  2_seg_color 24.0 MB 1,784 PNG Color-coded segmentation masks
├  3_depth 619 MB 1,784 PNG Depth images <Ref-Depth Anything V2-Large>
├  4_mm_lucas 348 KB 1 CSV Microdata (File name, Quality score <Ref-Q-Align>, Aesthetic score <Ref-Q-Align>, Geographical location, Country, Date, Land cover, Land use, Classes.)
├  5_aesthetics_score 264 KB 1 JSON Single question-answering: {"images:", "questions:", "answer:"}
├  5_land_cover 559 KB 1 JSON Multi-choice question-answering: {"images:", "questions:", "options:", "answer:"}
├  5_land_use 615 KB 1 JSON Multi-choice question-answering: {"images:", "questions:", "options:", "answer:"}
├  5_quality_score 267 KB 1 JSON Single question-answering: {"images:", "questions:", "answer:"}

Citation

If you find this paper and dataset helpful for your research, please consider citing as below:

@article{zhou2024agribench,
  title={AgriBench: A Hierarchical Agriculture Benchmark for Multimodal Large Language Models},
  author={Zhou, Yutong and Ryo, Masahiro},
  journal={arXiv preprint arXiv:2412.00465},
  year={2024}
}

@article{martinez2024semantic,
  title={Semantic segmentation dataset of Land Use/Cover Area frame Survey (LUCAS) rural landscape Street View Images},
  author={Martinez-Sanchez, Laura and Hufkens, Koen and Kearsley, Elizabeth and Naydenov, Dimitar and Cz{\'u}cz, B{\'a}lint and van de Velde, Marijn},
  journal={Data in Brief},
  volume={54},
  pages={110394},
  year={2024},
  publisher={Elsevier}
}

@article{d2020harmonised,
  title={Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union},
  author={d’Andrimont, Rapha{\"e}l and Yordanov, Momchil and Martinez-Sanchez, Laura and Eiselt, Beatrice and Palmieri, Alessandra and Dominici, Paolo and Gallego, Javier and Reuter, Hannes Isaak and Joebges, Christian and Lemoine, Guido and others},
  journal={Scientific data},
  volume={7},
  number={1},
  pages={352},
  year={2020},
  publisher={Nature Publishing Group UK London}
}

Figure end

About

[ECCV 2024 Workshop🎈] The first agriculture benchmark to evaluate MM-LLMs.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published