Skip to content

Customized Image Classifier based on Pytorch with visdom visualization Support customized dataset, augmentation and SOTA CNN(Resnet, Senet, EfficientNet....))

Notifications You must be signed in to change notification settings

YuhaoYeSteve/Pytorch-CNN-Classifier-Resnet-Senet-Efficientnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch-CNN-Classifier-Resnet-Senet-Efficientnet

Customized Image Classifier based on Pytorch with visdom visualization Support customized dataset, augmentation and SOTA CNN(Resnet, Senet, EfficientNet....))

Highlights

  • Automatic Mixed Precision Training: Support FP16 training based on NVIDIA-Apex which can help you training with 2x batch size as well as speed up training time.

  • Multi-GPU Training: Support single server multi-GPU training based on Pytorch nn.DataParallel module.

  • Training Process Visualization: Support visualize augmentation result and prediction result in browser based on visdom.

  • ONNX And TensorRT Transfer Included: Support transfer from trained .pth model to ONNX model which will be transfered to TensorRT .trt model; Support C++ inference code.

  • Annotation Tool Included: Provide a pure Python annotation tool which can support bounding box and point, Support both Windows and Linux.

Training

1. Prepare your dataset

# your dataset structure should be like this
./dataset/
    -your_project_name/
        -train/
            -0 (class from 0 to num of class of your dataset)
               -*.jpg 
            -1
               -*.jpg
            -2
               -*.jpg
            -3
               -*.jpg
            - .....
               -*.jpg
        -val/
            -0
               -*.jpg 
            -1
               -*.jpg
            -2
               -*.jpg
            -3
               -*.jpg
            - .....
               -*.jpg
        

# for example: cifar10(unziped)
./dataset/
    -cifar10/
        -train/
            -0 (cifar10 has 10 class in total 0-9) 
               -000000000001.jpg
               -000000000002.jpg
               -000000000003.jpg
               .... 

            - 1-8

            -9
               -000000000001.jpg
               -000000000002.jpg
               -000000000003.jpg
               .... 
        -val/
            -0 
               -000000000001.jpg
               -000000000002.jpg
               -000000000003.jpg
               .... 

            - 1-8

            -9
               -000000000001.jpg
               -000000000002.jpg
               -000000000003.jpg
               .... 

References

  1. lukemelas, EfficientNet-PyTorch: https://github.com/lukemelas/EfficientNet-PyTorch

  2. Mingxing Tan, Quoc V. Le EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks:https://arxiv.org/pdf/1905.11946.pdf

  3. albumentations-team, Albumentations: https://github.com/albumentations-team/albumentations

About

Customized Image Classifier based on Pytorch with visdom visualization Support customized dataset, augmentation and SOTA CNN(Resnet, Senet, EfficientNet....))

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages