Customized Image Classifier based on Pytorch with visdom visualization Support customized dataset, augmentation and SOTA CNN(Resnet, Senet, EfficientNet....))
-
Automatic Mixed Precision Training: Support FP16 training based on NVIDIA-Apex which can help you training with 2x batch size as well as speed up training time.
-
Multi-GPU Training: Support single server multi-GPU training based on Pytorch nn.DataParallel module.
-
Training Process Visualization: Support visualize augmentation result and prediction result in browser based on visdom.
-
ONNX And TensorRT Transfer Included: Support transfer from trained .pth model to ONNX model which will be transfered to TensorRT .trt model; Support C++ inference code.
-
Annotation Tool Included: Provide a pure Python annotation tool which can support bounding box and point, Support both Windows and Linux.
# your dataset structure should be like this
./dataset/
-your_project_name/
-train/
-0 (class from 0 to num of class of your dataset)
-*.jpg
-1
-*.jpg
-2
-*.jpg
-3
-*.jpg
- .....
-*.jpg
-val/
-0
-*.jpg
-1
-*.jpg
-2
-*.jpg
-3
-*.jpg
- .....
-*.jpg
# for example: cifar10(unziped)
./dataset/
-cifar10/
-train/
-0 (cifar10 has 10 class in total 0-9)
-000000000001.jpg
-000000000002.jpg
-000000000003.jpg
....
- 1-8
-9
-000000000001.jpg
-000000000002.jpg
-000000000003.jpg
....
-val/
-0
-000000000001.jpg
-000000000002.jpg
-000000000003.jpg
....
- 1-8
-9
-000000000001.jpg
-000000000002.jpg
-000000000003.jpg
....
-
lukemelas, EfficientNet-PyTorch: https://github.com/lukemelas/EfficientNet-PyTorch
-
Mingxing Tan, Quoc V. Le EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks:https://arxiv.org/pdf/1905.11946.pdf
-
albumentations-team, Albumentations: https://github.com/albumentations-team/albumentations